Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Junbao Yu is active.

Publication


Featured researches published by Junbao Yu.


Marine Environmental Research | 2011

Metabolic responses in gills of Manila clam Ruditapes philippinarum exposed to copper using NMR-based metabolomics

Linbao Zhang; Xiaoli Liu; Liping You; Di Zhou; Huifeng Wu; Lianzhen Li; Jianmin Zhao; Jianghua Feng; Junbao Yu

Copper is an important heavy metal contaminant with high ecological risk in the Bohai Sea. In this study, the metabolic responses in the bioindicator, Manila clam (Ruditapes philippinarum), to the environmentally relevant copper exposures were characterized using NMR-based metabolomics. The significant metabolic changes corresponding to copper exposures were related to osmolytes, intermediates of the Krebs cycle and amino acids, such as the increase in homarine, branched chain amino acids and decrease in succinate, alanine and dimethylamine in the copper-exposed clam gills during 96 h exposure period. Overall, Cu may lead to the disturbances in osmotic regulation and energy metabolism in clams during 96 h experimental period. These results demonstrate that NMR-based metabolomics is applicable for the discovery of metabolic biomarkers which could be used to elucidate the toxicological mechanisms of marine heavy metal contaminants.


Environmental Toxicology and Pharmacology | 2011

Benzo(a)pyrene-induced metabolic responses in Manila clam Ruditapes philippinarum by proton nuclear magnetic resonance ( 1 H NMR) based metabolomics

Linbao Zhang; Xiaoli Liu; Liping You; Di Zhou; Qing Wang; Fei Li; Ming Cong; Lianzhen Li; Jianmin Zhao; Dongyan Liu; Junbao Yu; Huifeng Wu

Benzo(a)pyrene is an important polycyclic aromatic hydrocarbon (PAH) which causes carcinogenic, teratogenic and mutagenic effects in various species and the level of contamination of this toxic agent in the marine environment is of great concern. In this study, metabolic responses induced by two doses (0.02 and 0.2μM) of BaP were characterized in the gill tissues of Manila clam Ruditapes philippinarum after exposure for 24, 48 and 96h. The high dose (0.2μM) of BaP induced the disturbances in energy metabolism and osmotic regulation based on the metabolic biomarkers such as succinate, alanine, glucose, glycogen, branched chain amino acids, betaine, taurine, homarine, and dimethylamine in clam gills after 24h of exposure. In addition, hormesis induced by BaP was found in clams exposed to both doses of BaP. Overall, our results demonstrated the applicability of metabolomics for the elucidation of toxicological effects of marine environmental contaminants in a selected bioindicator species such as the Manila clam.


Aquatic Toxicology | 2013

Proteomic and metabolomic analysis reveal gender-specific responses of mussel Mytilus galloprovincialis to 2,2',4,4'-tetrabromodiphenyl ether (BDE 47).

Chenglong Ji; Huifeng Wu; Lei Wei; Jianmin Zhao; Junbao Yu

Polybrominated diphenyl ethers (PBDEs) are a class of brominated flame-retardants (BFRs) that are widely used in industrial products and have posed potential risk on the coastal environment of the Laizhou Bay in China. They are of great concern due to their toxicities, such as hepatotoxicity, carcinogenecity, neurotoxicity, immunotoxicity and endocrine disrupting effects in animals. In this work, we focused on the gender-specific responses of BDE 47 in mussel Mytilus galloprovincialis using a combined proteomic and metabolomic approach. Metabolic responses indicated that BDE 47 mainly caused disturbance in energy metabolism in male mussel gills. For female mussel samples, disruption in both osmotic regulation and energy metabolism was found in terms of differential metabolic profiles. Proteomic responses revealed that BDE 47 induced cell apoptosis and reduced reactive oxygen species (ROS) production in both male and female mussels, disturbance in protein homeostasis in male mussels as well as disturbance in female mussel proteolysis based on the differential proteomic biomarkers. Overall, these results confirmed the gender-specific responses in mussels to BDE 47 exposures. This work demonstrated that an integrated metabolomic and proteomic approach could provide an important insight into the toxicological effects of environmental pollutant to organisms.


Aquatic Toxicology | 2013

Proteomic and metabolomic responses of clam Ruditapes philippinarum to arsenic exposure under different salinities

Huifeng Wu; Xiaoli Liu; Xingyan Zhang; Chenglong Ji; Jianmin Zhao; Junbao Yu

Arsenic (As) contamination is a severe problem in the intertidal zones of the Bohai Sea (China) with wide salinity variation. In the present study, we combined proteomics and metabolomics to characterize the differential responses of arsenic in clam Ruditapes philippinarum under different salinities (31.1, 23.3 and 15.6 psu). Both proteomic and metabolomic responses indicated that varying salinities could significantly affect the toxicological responses of clams to As. Metabolic biomarkers revealed that the environmentally relevant arsenic (20 μg L(-1)) exposure induced disturbance in energy metabolism and/or osmotic regulation under different salinities, whereas protein biomarkers indicated oxidative stress, cellular injury and apoptosis and disturbance in energy metabolism. In addition, the up-regulated proteins including ATP synthase, succinyl-CoA synthetase and nucleoside diphosphate kinase were validated by related metabolites, succinate and ATP, which confirmed the disturbance in energy metabolism in clam gills at low salinity (15.6 psu). These findings provide important insights into toxicological effects of environmental contaminant at molecular levels using combined proteomics and metabolomics.


Journal of Hazardous Materials | 2009

The Pd-catalyzed hydrodechlorination of chlorophenols in aqueous solutions under mild conditions: A promising approach to practical use in wastewater

Chuanhai Xia; Ying Liu; Shiwei Zhou; Cuiyun Yang; Sujing Liu; Jie Xu; Junbao Yu; Jiping Chen; Xinmiao Liang

Catalytic hydrotreating of chlorophenols was carried out in water with Pd/C at 25 degrees C under atmospheric pressure. 1.0% (w/w) monocholophenols was completely dechlorinated within 60 min. Phenol, cyclohexanone and cyclohexanol were formed. In contrast to the dechlorination of monochlorophenols, the hydrogenation reaction of polychlorinated phenols became difficult and reaction rates were strongly dependent upon the number of the chlorine atoms. The solvent property had a considerably important influence on the dechlorination reaction. Water as a solvent showed more advantages than organic solvents. It was much easier to be hydrodechlorinated for chlorophenols in aqueous solutions. However, the presence of THF, dioxane, DMSO or DMF in water was disadvantageous to the reaction and easily to cause Pd/C deactivation. Additionally, when different halogenated organic compounds were present in aqueous solution, the dehalogenation reaction was the competitive hydrogenation process.


Ecotoxicology and Environmental Safety | 2012

Pathways of cadmium fluxes in the root of the halophyte Suaeda salsa

Lianzhen Li; Xiaoli Liu; Willie J.G.M. Peijnenburg; Jianmin Zhao; Xiaobing Chen; Junbao Yu; Huifeng Wu

Halophyte plants offer a greater potential for phytoremediation research for reducing the levels of toxic metals from saline soils than salt sensitive plants. Using the scanning ion-selective electrode technique, we analyzed the pattern and rate of Cd(2+) fluxes at different regions of the root apex of Suaeda salsa. The Cd(2+) influx in the rhizosphere was greatest near the root tip (within 150μm of the tip). The results indicated that Cd(2+) influx into roots was significantly suppressed by the pre-treatment or in the presence of two kinds of Ca(2+) channel blockers; LaCl(3) and verapamil. The Cd(2+) influx was also reduced by N-ethylmaleimide, a thiol blocker. Cd content determination and labeling of Cd using fluorescent dye support our conclusion. The results of this study provide a more stable theoretical basis for the phytoremediation of Cd contamination in saline soils of coastal zones.


Fish & Shellfish Immunology | 2011

Transcriptional regulation of selenium-dependent glutathione peroxidase from Venerupis philippinarum in response to pathogen and contaminants challenge

Linbao Zhang; Xiaoli Liu; Leilei Chen; Liping You; Dong Pei; Ming Cong; Jianmin Zhao; Chenghua Li; Dongyan Liu; Junbao Yu; Huifeng Wu

Glutathione peroxidases (GPx) are key enzymes in the antioxidant systems of living organisms by catalyzing the reduction of peroxides to non-reactive products. In the present study, the full-length cDNA encoding a selenium-dependent GPx was identified from Venerupis philippinarum (designated as VpSe-GPx), and the spatial and temporal expression patterns post-Vibrio anguillarum, heavy metals and benzo[a]pyrene (B[a]P) challenge were also investigated. VpSe-GPx possessed all the conserved features critical for the fundamental structure and function of glutathione peroxidase. The VpSe-GPx mRNA was found to be most abundantly expressed in hepatopancreas. Vibrio challenge could significantly up-regulate the mRNA expression of VpSe-GPx, and the highest expression level was detected at 24 h post-infection with 6.5-fold increase compared with that in the control group. For heavy metals exposure, the expression of VpSe-GPx was significantly induced by 20, 40 μg L(-1) Cd and 10, 20 μg L(-1) Cu but depressed by 10 μg L(-1) Cd and 40 μg L(-1) Cu. With regards to B[a]P exposure, the expression of VpSe-GPx mRNA was significantly induced at 48 and 96 h post challenge. All these results suggested that VpSe-GPx was potentially involved in mediating the immune response and antioxidant defense in V. Philippinarum.


Marine Drugs | 2011

NMR-Based Metabolomic Investigations on the Differential Responses in Adductor Muscles from Two Pedigrees of Manila Clam Ruditapes philippinarum to Cadmium and Zinc

Huifeng Wu; Xiaoli Liu; Jianmin Zhao; Junbao Yu

Manila clam Ruditapes philippinarum is one of the most important economic species in shellfishery in China due to its wide geographic distribution and high tolerance to environmental changes (e.g., salinity, temperature). In addition, Manila clam is a good biomonitor/bioindicator in “Mussel Watch Programs” and marine environmental toxicology. However, there are several pedigrees of R. philippinarum distributed in the marine environment in China. No attention has been paid to the biological differences between various pedigrees of Manila clams, which may introduce undesirable biological variation in toxicology studies. In this study, we applied NMR-based metabolomics to detect the biological differences in two main pedigrees (White and Zebra) of R. philippinarum and their differential responses to heavy metal exposures (Cadmium and Zinc) using adductor muscle as a target tissue to define one sensitive pedigree of R. philippinarum as biomonitor for heavy metals. Our results indicated that there were significant metabolic differences in adductor muscle tissues between White and Zebra clams, including higher levels of alanine, glutamine, hypotaurine, phosphocholine and homarine in White clam muscles and higher levels of branched chain amino acids (valine, leucine and isoleucine), succinate and 4-aminobutyrate in Zebra clam muscles, respectively. Differential metabolic responses to heavy metals between White and Zebra clams were also found. Overall, we concluded that White pedigree of clam could be a preferable bioindicator/biomonitor in marine toxicology studies and for marine heavy metals based on the relatively high sensitivity to heavy metals.


PLOS ONE | 2013

An Integrated Proteomic and Metabolomic Study on the Chronic Effects of Mercury in Suaeda salsa under an Environmentally Relevant Salinity

Xiaoli Liu; Huifeng Wu; Chenglong Ji; Lei Wei; Jianmin Zhao; Junbao Yu

As an environmental contaminant, mercury is of great concern due to its high risk to environmental and human health. The halophyte Suaeda salsa is the dominant plant in the intertidal zones of the Yellow River Delta (YRD) where has been contaminated by mercury in some places. This study aimed at evaluating the chronic effects of mercury (Hg2+, 20 µg L−1) and the influence of an environmentally relevant salinity (NaCl, 500 mM) on mercury-induced effects in S. salsa. A total of 43 protein spots with significant changes were identified in response to Hg2+, salinity and combined Hg2+ and salinity. These proteins can be categorized into diverse functional classes, related to metabolic processes, photosynthesis, stress response, protein fate, energy metabolism, signaling pathways and immunosuppression. Metabolic responses demonstrated that Hg2+ could disturb protein and energy metabolisms in S. salsa co-exposed with or without salinity. In addition, both antagonistic and synergistic effects between Hg2+ and salinity were confirmed by differential levels of proteins (magnesium-chelatase and ribulose-l,5-bisphosphate carboxylase/oxygenase) and metabolites (valine, malonate, asparagine, glycine, fructose and glucose) in S. salsa. These findings suggest that a combination of proteomics and metabolomics can provide insightful information of environmental contaminant-induced effects in plants at molecular levels.


The Scientific World Journal | 2014

A Meta-Analysis of the Bacterial and Archaeal Diversity Observed in Wetland Soils

Xiao-Fei Lv; Junbao Yu; Yuqin Fu; Bin Ma; Fanzhu Qu; Kai Ning; Huifeng Wu

This study examined the bacterial and archaeal diversity from a worldwide range of wetlands soils and sediments using a meta-analysis approach. All available 16S rRNA gene sequences recovered from wetlands in public databases were retrieved. In November 2012, a total of 12677 bacterial and 1747 archaeal sequences were collected in GenBank. All the bacterial sequences were assigned into 6383 operational taxonomic units (OTUs 0.03), representing 31 known bacterial phyla, predominant with Proteobacteria (2791 OTUs), Bacteroidetes (868 OTUs), Acidobacteria (731 OTUs), Firmicutes (540 OTUs), and Actinobacteria (418 OTUs). The genus Flavobacterium (11.6% of bacterial sequences) was the dominate bacteria in wetlands, followed by Gp1, Nitrosospira, and Nitrosomonas. Archaeal sequences were assigned to 521 OTUs from phyla Euryarchaeota and Crenarchaeota. The dominating archaeal genera were Fervidicoccus and Methanosaeta. Rarefaction analysis indicated that approximately 40% of bacterial and 83% of archaeal diversity in wetland soils and sediments have been presented. Our results should be significant for well-understanding the microbial diversity involved in worldwide wetlands.

Collaboration


Dive into the Junbao Yu's collaboration.

Top Co-Authors

Avatar

Huifeng Wu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guangxuan Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianmin Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoli Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guangmei Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Di Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Yunzhao Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Linbao Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Liping You

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chuanhai Xia

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge