Huihuang Chen
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huihuang Chen.
Science of The Total Environment | 2016
Jun Yang; Hong Lv; Lemian Liu; Xiaoqing Yu; Huihuang Chen
Globally aquatic ecosystems are likely to become more vulnerable to extreme water fluctuation rates due to the combined effects of climate change and human activity. However, relatively little is known about the importance of water level fluctuations (WLF) as a predictor of phytoplankton community shifts in subtropical reservoirs. In this study, we used one year of data (2010-2011) from four subtropical reservoirs of southeast China to quantify the effects of WLF and other environmental variables on phytoplankton and cyanobacteria dynamics. The reservoirs showed an apparent switch between a turbid state dominated by cyanobacteria and a clear state dominated by other non-cyanobacterial taxa (e.g., diatoms, green algae). Cyanobacterial dominance decreased, or increased, following marked changes in water level. Multiple regression analysis demonstrated that pH, euphotic depth, WLF, and total phosphorus provided the best model and explained 30.8% of the variance in cyanobacteria biomass. Path analysis showed that positive WLF (i.e. an increase in water level) can reduce the cyanobacteria biomass either directly by a dilution effect or indirectly by modifying the limnological conditions of the reservoirs in complex pathways. To control the risk of cyanobacterial dominance or blooms, WLF should be targeted to be above +2m/month; that is an increase in water level of 2m or more. Given that WLF is likely to be of more frequent occurrence under future predicted conditions of climate variability and human activity, water level management can be widely used in small and medium-sized reservoirs to prevent the toxic cyanobacterial blooms and to protect the ecosystem integrity or functions.
Water Research | 2017
Jun R. Yang; Hong Lv; Alain Isabwe; Lemian Liu; Xiaoqing Yu; Huihuang Chen; Jun Yang
Many countries in the world still suffer from high toxic cyanobacterial blooms in inland waters used for human consumption. Regional climate change and human activities within watersheds exert a complex and diverse influence on aquatic ecosystem structure and function across space and time. However, the degree to which these factors may contribute to the long-term dynamics of plankton communities is still not well understood. Here, we explore the impacts of multiple disturbance events (e.g. human-resettlement, temperature change, rainfall, water level fluctuations), including six combined disturbances, on phytoplankton and cyanobacteria in two subtropical reservoirs over six years. Our data showed that combined environmental disturbances triggered two apparent and abrupt switches between cyanobacteria-dominated state and non-cyanobacterial taxa-dominated state. In late 2010, the combined effect of human-resettlement (emigration) and natural disturbances (e.g. cooling, rainfall, water level fluctuations) lead to a 60-90% decrease in cyanobacteria biomass accompanied by the disappearance of cyanobacterial blooms, in tandem with an abrupt and persistent shift in phytoplankton community. After summer 2014, however, combined weather and hydrological disturbances (e.g. warming, rainfall, water level fluctuations) occurred leading to an abrupt and marked increase of cyanobacteria biomass, associated with a return to cyanobacteria dominance. These changes in phytoplankton community were strongly related to the nutrient concentrations and water level fluctuations, as well as water temperature and rainfall. As both extreme weather events and human disturbances are predicted to become more frequent and severe during the twenty-first century, prudent sustainable management will require consideration of the background limnologic conditions and the frequency of disturbance events when assessing the potential impacts on reservoir biodiversity and ecosystem functioning and services.
Applied Microbiology and Biotechnology | 2015
Yongming Wang; Lemian Liu; Huihuang Chen; Jun Yang
The spatiotemporal distribution of microbial diversity, community composition, and their major drivers are fundamental issues in microbial ecology. In this study, the planktonic bacterial and microeukaryotic communities of the Jiulong River were investigated across both wet and dry seasons by using denaturing gradient gel electrophoresis (DGGE). We found evidence of temporal change between wet and dry seasons and distinct spatial patterns of bacterial and microeukaryotic communities. Both bacterial and microeukaryotic communities were strongly correlated with temperature, NH4-N, PO4-P, and chlorophyll a, and these environmental factors were significant but incomplete predictors of microbial community composition. Local environmental factors combined with spatial and temporal factors strongly controlled both bacterial and microeukaryotic communities in complex ways, whereas the direct influence of spatial and temporal factors appeared to be relatively small. Path analysis revealed that the microeukaryotic community played key roles in shaping bacterial community composition, perhaps through grazing effects and multiple interactions. Both Betaproteobacteria and Actinobacteria were the most dominant and diverse taxa in bacterial communities, while the microeukaryotic communities were dominated by Ciliophora (zooplankton) and Chlorophyta (phytoplankton). Our results demonstrated that both bacterial and microeukaryotic communities along the Jiulong River displayed a distinct spatiotemporal pattern; however, microeukaryotic communities exhibited a stronger distance-decay relationship than bacterial communities and their spatial patterns were mostly driven by local environmental variables rather than season or spatial processes of the river. Therefore, we have provided baseline data to support further research on river microbial food webs and integrating different microbial groups into river models.
Molecular Ecology Resources | 2017
Lemian Liu; Min Liu; David M. Wilkinson; Huihuang Chen; Xiaoqing Yu; Jun Yang
Microeukaryotic plankton (0.2–200 μm) are critical components of aquatic ecosystems and key players in global ecological processes. High‐throughput sequencing is currently revolutionizing their study on an unprecedented scale. However, it is currently unclear whether we can accurately, effectively and quantitatively depict the microeukaryotic plankton communities using traditional size‐fractionated filtering combined with molecular methods. To address this, we analysed the eukaryotic plankton communities both with, and without, prefiltering with a 200 μm pore‐size sieve –by using SSU rDNA‐based high‐throughput sequencing on 16 samples with three replicates in each sample from two subtropical reservoirs sampled from January to October in 2013. We found that ~25% reads were classified as metazoan in both size groups. The species richness, alpha and beta diversity of plankton community and relative abundance of reads in 99.2% eukaryotic OTUs showed no significant changes after prefiltering with a 200 μm pore‐size sieve. We further found that both >0.2 μm and 0.2–200 μm eukaryotic plankton communities, especially the abundant plankton subcommunities, exhibited very similar, and synchronous, spatiotemporal patterns and processes associated with almost identical environmental drivers. The lack of an effect on community structure from prefiltering suggests that environmental DNA from larger metazoa is introduced into the smaller size class. Therefore, size‐fractionated filtering with 200 μm is insufficient to discriminate between the eukaryotic plankton size groups in metabarcoding approaches. Our results also highlight the importance of sequencing depth, and strict quality filtering of reads, when designing studies to characterize microeukaryotic plankton communities.
Environmental Microbiology | 2018
Wenjing Zhang; Yongbo Pan; Jun Yang; Huihuang Chen; Bridget A. Holohan; Jamie M.P. Vaudrey; Senjie Lin; George B. McManus
Benthic microeukaryotes are key ecosystem drivers in marine sandy beaches, an important and dynamic environment; however, little is known about their diversity and biogeography on a large spatial scale. Here, we investigated the community composition and geographical distributions of benthic microeukaryotes using high-throughput sequencing of the 18S rRNA gene and quantified the contributions of environmental factors and spatial separation on the distribution patterns of both rare and abundant taxa. We collected 36 intertidal samples at 12 sandy beaches from four regions that spanned distances from 0.001 to 12,000 km. We found 12,890 operational taxonomic units (OTUs; 97% sequence identity level) including members of all eukaryotic super-groups and several phyla of uncertain position. Arthropoda and Diatomeae dominated the sequence reads in abundance, but Ciliophora and Discoba were the most diverse groups across all samples. About one-third of the OTUs could not be definitively classified at a similarity level of 80%, supporting the view that a large number of rare and minute marine species may have escaped previous characterization. We found generally similar geographical patterns for abundant and rare microeukaryotic sub-communities, and both showed a significant distance-decay similarity trend. Variation partitioning showed that both rare and abundant sub-communities exhibited a slightly stronger response to environmental factors than spatial (distance) factors. However, the abundant sub-community was strongly correlated with variations in spatial, environmental and sediment grain size factors (66% of variance explained), but the rare assemblage was not (16%). This suggests that different or more complex mechanisms generate and maintain diversity in the rare biosphere in this habitat.
FEMS Microbiology Ecology | 2017
Yuanyuan Xue; Zheng Yu; Huihuang Chen; Jun R. Yang; Min Liu; Lemian Liu; Bangqing Huang; Jun Yang
ABSTRACT The degradation of freshwater quality induced by cyanobacterial blooms is a major global environmental concern. Microbially driven nitrogen removal could alleviate eutrophication to some degree in freshwater ecosystems. However, the response of anaerobic ammonium oxidizing (anammox) bacterial communities to cyanobacterial blooms remains poorly understood, especially in reservoir ecosystems. Here we compared the dynamics of anammox bacterial communities during and after a cyanobacterial bloom in a subtropical reservoir. Our data showed that a cyanobacterial bloom triggered a significant increase in bottom anammox bacterial abundance. During the bloom period, anammox bacterial abundance in bottom waters was 9‐fold and 52‐fold higher compared with non‐bloom stratification and mixing periods, respectively. The community composition of anammox bacteria in surface waters changed substantially accompanied by the disappearance of the cyanobacterial bloom, and a shift of dominance from unidentified anammox genera to Ca. Brocadia was observed. Although Ca. Brocadia was always predominant in both middle and bottom waters, the non‐bloom period had more unique taxa than the bloom period. Cyanobacterial bloom‐related changes in environmental conditions (e.g. NH4‐N and total organic carbon) and water stratification together influenced the distribution and dynamics of anammox bacteria. Altogether, our study lays the basis for a better understanding of the breakdown of cyanobacterial blooms in a stratified reservoir.
Science of The Total Environment | 2018
Alain Isabwe; Jun R. Yang; Yongming Wang; Lemian Liu; Huihuang Chen; Jun Yang
Although the influence of microbial community assembly processes on aquatic ecosystem function and biodiversity is well known, the processes that govern planktonic communities in human-impacted rivers remain largely unstudied. Here, we used multivariate statistics and a null model approach to test the hypothesis that environmental conditions and obstructed dispersal opportunities, dictate a deterministic community assembly for phytoplankton and bacterioplankton across contrasting hydrographic conditions in a subtropical mid-sized river (Jiulong River, southeast China). Variation partitioning analysis showed that the explanatory power of local environmental variables was larger than that of the spatial variables for both plankton communities during the dry season. During the wet season, phytoplankton community variation was mainly explained by local environmental variables, whereas the variance in bacterioplankton was explained by both environmental and spatial predictors. The null model based on Raup-Crick coefficients for both planktonic groups suggested little evidences of the stochastic processes involving dispersal and random distribution. Our results showed that hydrological change and landscape structure act together to cause divergence in communities along the river channel, thereby dictating a deterministic assembly and that selection exceeds dispersal limitation during the dry season. Therefore, to protect the ecological integrity of human-impacted rivers, watershed managers should not only consider local environmental conditions but also dispersal routes to account for the effect of regional species pool on local communities.
Environment International | 2018
Yunyan Guo; Min Liu; Lemian Liu; Xuan Liu; Huihuang Chen; Jun Yang
In freshwater systems, both antibiotic resistance genes (ARGs) and cyanobacterial blooms attract global public health concern. Cyanobacterial blooms can greatly impact bacterial taxonomic communities, but very little is known about the influence of the blooms on antibiotic resistance functional community. In this study, the ARGs in both free-living (FL) and particle-attached (PA) bacteria under bloom and non-bloom conditions were simultaneously investigated in a subtropical reservoir using high-throughput approaches. In total, 145 ARGs and 9 mobile genetic elements (MGEs) were detected. The most diverse and dominant of which (68.93%) were multidrug resistance genes and efflux pump mechanism. The richness of ARGs in both FL and PA bacteria was significantly lower during the bloom period compared with non-bloom period. The abundance of ARGs in FL bacteria was significantly lower under bloom condition than in the non-bloom period, but the abundance of ARGs in PA bacteria stayed constant. More importantly, the resistant functional community in PA bacteria was more strongly influenced by the cyanobacterial bloom than in the FL bacteria, although >96% ARGs were shared in both FL and PA bacteria or both bloom and non-bloom periods. We also compared the community compositions between taxonomy and function, and found antibiotic resistant communities were highly variable and exhibited lower similarity between bloom and non-bloom periods than seen in the taxonomic composition, with an exception of FL bacteria. Altogether, cyanobacterial blooms appear to have stronger inhibitory effect on ARG abundance in FL bacteria, and stronger influence on antibiotic resistant community composition in PA bacteria. Our results further suggested that both neutral and selective processes interactively affected the ARG composition dynamics of the FL and PA bacteria. However, the antibiotic resistant community of FL bacteria exhibited a higher level of temporal stochasticity following the bloom event than PA bacteria. Therefore, we emphasized the bacterial lifestyles as an important mechanism, giving rise to different responses of antibiotic resistant community to the cyanobacterial bloom.
Water Research | 2018
Kexin Ren; Yuanyuan Xue; Regin Rønn; Lemian Liu; Huihuang Chen; Christopher Rensing; Jun Yang
Free-living amoebae are widespread in freshwater ecosystems. Although many studies have investigated changes in their communities across space, the temporal variability and the drivers of community changes across different habitat types are poorly understood. A total of 108 surface water samples were collected on a seasonal basis from four reservoirs and two rivers in Xiamen city, subtropical China. We used high throughput sequencing and qPCR methods to explore the occurrence and abundance of free-living amoebae. In total, 335 amoeba OTUs were detected, and only 32 OTUs were shared by reservoir and river habitats. The reservoirs and rivers harbored unique amoebae communities and exhibited distinct seasonal patterns in community composition. High abundance of the 18S rRNA gene of Acanthamoeba was observed in spring and summer, whereas the abundance was low in autumn and winter. In addition, the abundance of Hartmannella was significantly higher when isolated from reservoirs in summer/autumn and from river in spring/summer. Moreover, the temporal patterns of amoebae communities were significantly associated with water temperature, indicating that temperature is an important variable controlling the ecological dynamics of amoebae populations. However, our comparative analysis indicated that both environmental selection, and neutral processes, significantly contributed to amoeba community assembly. The genera detected here include pathogenic species and species that can act as vectors for microbial pathogens, which can cause human infections.
The ISME Journal | 2018
Yuanyuan Xue; Huihuang Chen; Jun R. Yang; Min Liu; Bangqin Huang; Jun Yang