Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Lemian Liu is active.

Publication


Featured researches published by Lemian Liu.


The ISME Journal | 2015

The biogeography of abundant and rare bacterioplankton in the lakes and reservoirs of China

Lemian Liu; Jun Yang; Zheng Yu; David M. Wilkinson

Bacteria play key roles in the ecology of both aquatic and terrestrial ecosystems; however, little is known about their diversity and biogeography, especially in the rare microbial biosphere of inland freshwater ecosystems. Here we investigated aspects of the community ecology and geographical distribution of abundant and rare bacterioplankton using high-throughput sequencing and examined the relative influence of local environmental variables and regional (spatial) factors on their geographical distribution patterns in 42 lakes and reservoirs across China. Our results showed that the geographical patterns of abundant and rare bacterial subcommunities were generally similar, and both of them showed a significant distance–decay relationship. This suggests that the rare bacterial biosphere is not a random assembly, as some authors have assumed, and that its distribution is most likely subject to the same ecological processes that control abundant taxa. However, we identified some differences between the abundant and rare groups as both groups of bacteria showed a significant positive relationship between sites occupancy and abundance, but the abundant bacteria exhibited a weaker distance–decay relationship than the rare bacteria. Our results implied that rare subcommunities were mostly governed by local environmental variables, whereas the abundant subcommunities were mainly affected by regional factors. In addition, both local and regional variables that were significantly related to the spatial variation of abundant bacterial community composition were different to those of rare ones, suggesting that abundant and rare bacteria may have discrepant ecological niches and may play different roles in natural ecosystems.


Environmental Science and Pollution Research | 2012

Algae community and trophic state of subtropical reservoirs in southeast Fujian, China

Jun Yang; Xiaoqing Yu; Lemian Liu; Wenjing Zhang; Peiyong Guo

Background,aim, and scope Fujian reservoirs in southeast China are important water resources for economic and social sustainable development, although few have been studied previously. In recent years, growing population and increasing demands for water shifted the focus of many reservoirs from flood control and irrigation water to drinking water. However, most of them showed a rapid increase in the level of eutrophication, which is one of the most serious and challenging environmental problems. In this study, we investigated the algae community characteristics, trophic state, and eutrophication control strategies for typical subtropical reservoirs in southeast Fujian.Materials and methodsSurface water samples were collected using polyvinyl chloride (PVC) plastic bottles from 11 Fujian reservoirs in summer 2010. Planktonic algae were investigated by optical microscopy. Water properties were determined according to the national standard methods.Results and discussionShallow reservoirs generally have higher values of trophic state index (TSI) and appear to be more susceptible to anthropogenic disturbance than deeper reservoirs. A total of 129 taxa belonging to eight phyla (i.e., Bacillariophyta, Chlorophyta, Chrysophyta, Cryptophyta, Cyanophyta, Euglenophyta, Pyrrophyta, Xanthophyta) were observed and the most diverse groups were Chlorophyta (52 taxa), Cyanophyta (20 taxa), Euglenophyta (17 taxa), Chrysophyta (14 taxa). The dominant groups were Chlorophyta (40.58%), Cyanophyta (22.91%), Bacillariophyta (21.61%), Chrysophyta (6.91%). The species richness, abundance, diversity, and evenness of algae varied significantly between reservoirs. TSI results indicated that all 11 reservoirs were eutrophic, three of them were hypereutrophic, six were middle eutrophic, and two were light eutrophic. There was a strong positive correlation between algal diversity and TSI at P < 0.05. Our canonical correspondence analysis (CCA) results illustrated that temperature, transparency, conductivity, DO, TC, NH4-N, NOx-N, TP, and chlorophyll a were significant environmental variables affecting the distribution of algae communities. The transparency and chlorophyll a were the strongest environmental factors in explaining the community data. Furthermore, the degradation of water quality associated with excess levels of nitrogen and phosphorus in Fujian reservoirs may be impacted by interactions among agriculture and urban factors. A watershed-based management strategy, especially phosphorus control, should be developed for drinking water source protection and sustainable reservoirs in the future.Conclusion and recommendationsAll investigated reservoirs were eutrophicated based on the comprehensive TSI values; thus, our results provided an early warning of water degradation in Fujian reservoirs. Furthermore, the trophic state plays an important role in shaping community structure and in determining species diversity of algae. Therefore, long-term and regular monitoring of Euglenophyta, Cyanophyta, TN, TP and chlorophyll a in reservoirs is urgently needed to further understand the future trend of eutrophication and to develop a watershed-based strategy to manage the Cyanophyta bloom hazards.


PLOS ONE | 2013

Patterns in the composition of microbial communities from a subtropical river: effects of environmental, spatial and temporal factors.

Lemian Liu; Jun Yang; Xiaoqing Yu; Guangjie Chen; Zheng Yu

Microbes are key components of aquatic ecosystems and play crucial roles in global biogeochemical cycles. However, the spatiotemporal dynamics of planktonic microbial community composition in riverine ecosystems are still poorly understood. In this study, we used denaturing gradient gel electrophoresis of PCR-amplified 16S and 18S rRNA gene fragments and multivariate statistical methods to explore the spatiotemporal patterns and driving factors of planktonic bacterial and microbial eukaryotic communities in the subtropical Jiulong River, southeast China. Both bacterial and microbial eukaryotic communities varied significantly in time and were spatially structured according to upper stream, middle-lower stream and estuary. Among all the environmental factors measured, water temperature, conductivity, PO4-P and TN/TP were best related to the spatiotemporal distribution of bacterial community, while water temperature, conductivity, NOx-N and transparency were closest related to the variation of eukaryotic community. Variation partitioning, based on partial RDA, revealed that environmental factors played the most important roles in structuring the microbial assemblages by explaining 11.3% of bacterial variation and 17.5% of eukaryotic variation. However, pure spatial factors (6.5% for bacteria and 9.6% for eukaryotes) and temporal factors (3.3% for bacteria and 5.5% for eukaryotes) also explained some variation in microbial distribution, thus inherent spatial and temporal variation of microbial assemblages should be considered when assessing the impact of environmental factors on microbial communities.


Environmental Science and Pollution Research | 2014

Temperature and nutrients are significant drivers of seasonal shift in phytoplankton community from a drinking water reservoir, subtropical China

Hong Lv; Jun Yang; Lemian Liu; Xiaoqing Yu; Zheng Yu; Pen-Chi Chiang

Reservoirs are an important source of water supply in many densely populated areas in southeast China. Phytoplankton plays an important role in maintaining the structure and function of these reservoir ecosystems. Understanding of seasonal succession in phytoplankton communities and its driving factors is essential for effective water quality management in drinking-water reservoirs. In this study, water samples were collected monthly at the surface layers of riverine, transitional, and lacustrine zones from May 2010 to April 2011 in Tingxi Reservoir, southeast China. The phytoplankton showed distinct seasonal shifts in community structure at both taxonomic and functional levels. Cyanophyta was the dominant group in summer, especially species of Raphidiopsis in May and Aphanizomenon in June, and cyanobacterial dominance was promoted by both warmer conditions and excessive nutrients loading. Cyanophyta was gradually replaced by Cryptophyta (e.g., Chroomonas caudata) in abundance and by Bacillariophyta (Fragilaria sp. or Synedra sp. and Melosira sp.) in biomass with decreasing temperature. It appeared that seasonal shifts in phytoplankton composition were closely related to climate, nutrient status, and hydrology in this reservoir. Our partial RDA results clearly showed that water temperature and nutrients (TN and TP) were the most critical factors driving phytoplankton community shift in the abundance and biomass data, respectively. Further, with the global warming, cyanobacterial blooms may increase in distribution, duration, and intensity. In our study, the abundance and biomass of cyanobacteria had significant and positive correlations with temperature and phosphorus. Therefore, a stricter limit on nutrient input should be a priority in watershed management to protect drinking water from the effects of cyanobacterial blooms, especially in high-temperature period.


Scientific Reports | 2015

Effects of water stratification and mixing on microbial community structure in a subtropical deep reservoir

Zheng Yu; Jun Yang; Stefano Amalfitano; Xiaoqing Yu; Lemian Liu

Microorganisms play pivotal roles within aquatic ecosystems, affecting their structure, functioning and services. However, little is known about the effects of water stratification and mixing on the aquatic microbial community dynamics in subtropical reservoirs. In this study, we explored vertical and seasonal patterns of microbial diversity in the Dongzhen Reservoir (southeast China). Quantitative PCR, quantitative RT-PCR, and 454 pyrosequencing were used for an in-depth characterization of the bacterial community across time (every three months for one year) and space (five different water depths). Our results indicated that thermal and oxygen stratification shaped the phylogenetic composition of microbial communities in the reservoir. There were significant differences in physical, chemical and microbiological parameters between epilimnion and hypolimnion (P < 0.05). The RNA: DNA ratios were significantly lower in epilimnion and metalimnion but rapidly increased in hypolimnion (P < 0.05), suggesting that microorganisms were more active at low temperatures, low dissolved oxygen concentrations and high TN/TP ratios. Redundancy analysis and pathway analysis revealed a complex interplay of various environmental and biological factors by explaining the spatiotemporal variations in bacterial communities. Adaptive reservoir management strategies should consider carefully the effects of water stratification and mixing, together with the distribution patterns of aquatic microorganisms.


FEMS Microbiology Ecology | 2014

Synchronous dynamics and correlations between bacteria and phytoplankton in a subtropical drinking water reservoir

Lemian Liu; Jun Yang; Hong Lv; Zheng Yu

Both phytoplankton and bacteria are key and abundant components of aquatic ecosystems and play pivotal roles in maintaining ecosystem structure and function. However, the extent to which phytoplankton community succession influences changes in bacterial community composition (BCC) is largely unknown. In this study, we evaluated the correlations between bacteria and phytoplankton communities and determined the relative contribution of phytoplankton community succession to temporal variation of BCC in a subtropical drinking water reservoir (Tingxi Reservoir, southeast China). Bacterial communities were investigated by quantitative PCR and 454 pyrosequencing of 16S rRNA genes, while phytoplankton communities were analyzed by light microscopy. A remarkable seasonal succession from Cyanophyta to Bacillariophyta was observed during the study period, and this succession can accurately predict the distribution and abundance of the bacterial OTUs based on the discriminant function analysis. Association networks revealed that 38 of the 46 abundant bacterial OTUs exhibited significant correlations with phytoplankton. More interestingly, the positive correlations dominated the associated network, which may suggest that facilitative correlations between phytoplankton and bacteria are more important than inhibitory correlations in the Tingxi Reservoir. In addition, some bacterial OTUs were closely correlated with the dynamics of Microcystis, and they were affiliated with the divisions Acidobacteria, Actinobacteria, and Proteobacteria. Structural equation model showed that succession of phytoplankton community explained the largest part of temporal variation in BCC. Therefore, our data suggest that the distinct succession of phytoplankton community may mediate the temporal dynamics of bacterial community in the Tingxi Reservoir.


Science of The Total Environment | 2016

Decline in water level boosts cyanobacteria dominance in subtropical reservoirs

Jun Yang; Hong Lv; Lemian Liu; Xiaoqing Yu; Huihuang Chen

Globally aquatic ecosystems are likely to become more vulnerable to extreme water fluctuation rates due to the combined effects of climate change and human activity. However, relatively little is known about the importance of water level fluctuations (WLF) as a predictor of phytoplankton community shifts in subtropical reservoirs. In this study, we used one year of data (2010-2011) from four subtropical reservoirs of southeast China to quantify the effects of WLF and other environmental variables on phytoplankton and cyanobacteria dynamics. The reservoirs showed an apparent switch between a turbid state dominated by cyanobacteria and a clear state dominated by other non-cyanobacterial taxa (e.g., diatoms, green algae). Cyanobacterial dominance decreased, or increased, following marked changes in water level. Multiple regression analysis demonstrated that pH, euphotic depth, WLF, and total phosphorus provided the best model and explained 30.8% of the variance in cyanobacteria biomass. Path analysis showed that positive WLF (i.e. an increase in water level) can reduce the cyanobacteria biomass either directly by a dilution effect or indirectly by modifying the limnological conditions of the reservoirs in complex pathways. To control the risk of cyanobacterial dominance or blooms, WLF should be targeted to be above +2m/month; that is an increase in water level of 2m or more. Given that WLF is likely to be of more frequent occurrence under future predicted conditions of climate variability and human activity, water level management can be widely used in small and medium-sized reservoirs to prevent the toxic cyanobacterial blooms and to protect the ecosystem integrity or functions.


PLOS ONE | 2015

Determining Microeukaryotic Plankton Community around Xiamen Island, Southeast China, Using Illumina MiSeq and PCR-DGGE Techniques.

Lingyu Yu; Wenjing Zhang; Lemian Liu; Jun Yang

Microeukaryotic plankton are important components of aquatic environments and play key roles in marine microbial food webs; however, little is known about their genetic diversity in subtropical offshore areas. Here we examined the community composition and genetic diversity of the microeukaryotic plankton in Xiamen offshore water by PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis), clone-based sequencing and Illumina based sequencing. The Illumina MiSeq sequencing revealed a much (approximately two orders of magnitude) higher species richness of the microeukaryotic community than DGGE, but there were no significant difference in species richness and diversity among the northern, eastern, southern or western stations based on both methods. In this study, Copepoda, Ciliophora, Chlorophyta, Dinophyceae, Cryptophyta and Bacillariophyta (diatoms) were the dominant groups even though diatoms were not detected by DGGE. Our Illumina based results indicated that two northern communities (sites N2 and N3) were significantly different from others in having more protozoa and fewer diatoms. Redundancy analysis (RDA) showed that both temperature and salinity were the significant environmental factors influencing dominant species communities, whereas the full microeukaryotic community appeared to be affected by a complex of environmental factors. Our results suggested that extensive sampling combined with more deep sequencing are needed to obtain the complete diversity of the microeukaryotic community, and different diversity patterns for both abundant and rare taxa may be important in evaluating the marine ecosystem health.


Microbial Ecology | 2014

Diversity and Distribution of Freshwater Testate Amoebae (Protozoa) Along Latitudinal and Trophic Gradients in China

Lihua Ju; Jun Yang; Lemian Liu; David M. Wilkinson

Freshwater microbial diversity is subject to multiple stressors in the Anthropocene epoch. However, the effects of climate changes and human activities on freshwater protozoa remain poorly understood. In this study, the diversity and distribution of testate amoebae from the surface sediments were investigated in 51 Chinese lakes and reservoirs along two gradients, latitude and trophic status. A total of 169 taxa belonging to 24 genera were identified, and the most diverse and dominant genera were Difflugia (78 taxa), Centropyxis (26 taxa) and Arcella (12 taxa). Our analysis revealed that biomass of testate amoebae decreased significantly along the latitudinal gradient, while Shannon-Wiener indices and species richness presented an opposite trend (P < 0.05). The relationship of diversity and latitude is, we suspect, an artifact of the altitudinal distribution of our sites. Furthermore, biomass-based Shannon-Wiener index and species richness of testate amoebae were significantly unimodally related to trophic status (P < 0.05). This is the first large-scale study showing the effects of latitude and trophic status on diversity and distribution of testate amoebae in China. Therefore, our results provide valuable baseline data on testate amoebae and contribute to lake management and our understanding of the large-scale global patterns in microorganism diversity.


Water Research | 2017

Disturbance-induced phytoplankton regime shifts and recovery of cyanobacteria dominance in two subtropical reservoirs

Jun R. Yang; Hong Lv; Alain Isabwe; Lemian Liu; Xiaoqing Yu; Huihuang Chen; Jun Yang

Many countries in the world still suffer from high toxic cyanobacterial blooms in inland waters used for human consumption. Regional climate change and human activities within watersheds exert a complex and diverse influence on aquatic ecosystem structure and function across space and time. However, the degree to which these factors may contribute to the long-term dynamics of plankton communities is still not well understood. Here, we explore the impacts of multiple disturbance events (e.g. human-resettlement, temperature change, rainfall, water level fluctuations), including six combined disturbances, on phytoplankton and cyanobacteria in two subtropical reservoirs over six years. Our data showed that combined environmental disturbances triggered two apparent and abrupt switches between cyanobacteria-dominated state and non-cyanobacterial taxa-dominated state. In late 2010, the combined effect of human-resettlement (emigration) and natural disturbances (e.g. cooling, rainfall, water level fluctuations) lead to a 60-90% decrease in cyanobacteria biomass accompanied by the disappearance of cyanobacterial blooms, in tandem with an abrupt and persistent shift in phytoplankton community. After summer 2014, however, combined weather and hydrological disturbances (e.g. warming, rainfall, water level fluctuations) occurred leading to an abrupt and marked increase of cyanobacteria biomass, associated with a return to cyanobacteria dominance. These changes in phytoplankton community were strongly related to the nutrient concentrations and water level fluctuations, as well as water temperature and rainfall. As both extreme weather events and human disturbances are predicted to become more frequent and severe during the twenty-first century, prudent sustainable management will require consideration of the background limnologic conditions and the frequency of disturbance events when assessing the potential impacts on reservoir biodiversity and ecosystem functioning and services.

Collaboration


Dive into the Lemian Liu's collaboration.

Top Co-Authors

Avatar

Jun Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zheng Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoqing Yu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong Lv

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Huihuang Chen

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

David M. Wilkinson

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yongming Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Alain Isabwe

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jun R. Yang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge