Huijun Jin
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huijun Jin.
Pedosphere | 2009
Si-Zhong Yang; Huijun Jin; Zhi Wei; Rui-Xia He; Yan-Jun Ji; Xiu-Mei Li; Shao-Peng Yu
Oil spills have become a serious problem in cold environments with the ever-increasing resource exploitation, transportation, storage, and accidental leakage of oil. Several techniques, including physical, chemical, and biological methods, are used to recover spilled oil from the environment. Bioremediation is a promising option for remediation since it is effective and economic in removing oil with less undue environmental damages. However, it is a relatively slow process in cold regions and the degree of success depends on a number of factors, including the properties and fate of oil spilled in cold environments, and the major microbial and environmental limitations of bioremediation. The microbial factors include bioavailability of hydrocarbons, mass transfer through the cell membrane, and metabolic limitations. As for the environmental limitations in the cold regions, the emphasis is on soil temperatures, freeze-thaw processes, oxygen and nutrients availability, toxicity, and electron acceptors. There have been several cases of success in the polar regions, particularly in the Arctic and sub-Arctic regions. However, the challenges and constraints for bioremediation in cold environments remain large.
Science China-earth Sciences | 1999
Ersi Kang; Guodong Cheng; Yongchao Lan; Huijun Jin
A model for simulating the response of monthly runoff from the mountainous watersheds to climatic changes is developed. The model is based on the modifications to the HBV runoff model, and therefore represents the characteristics and runofF generation processes of inland river basins in the arid area of northwest China. Talcing the mountainous watershed of an inland river, the Heihe River originating from the Qilian Mountains and running through the Hexi Corridor as an example, the monthly runoff changes under different climate scenarios are simulated. The simulation indicates that, during the years fmm 1994 to 2030, if the annual mean air temperature increases by 0.5°C, and precipitation keeps unchanged, then the runoff of May and October will increase because of the increase of the snow melt runoff, but the runoff of July and August will decrease to some extent because of the increase of evaporation, and as a result, the annual runoff will decrease by 4%. If the precipitation still keeps unchanged, and the air temperature increases by 1.0°C, in addition to the increase of runoff of May and June, the runoff of July and August will decrease in a larger amount, making the annual runoff decrease by 7.11%. If the air temperature keeps unchanged, the increase of annual precipitation by 10% will cause the increase of runoff by 5.27%; while the increase of precipitation by 20% will cause the increase of runoff by 12.35 %. When the air temperature increases by 0.5°C: and the precipitation increases by 10%, the mnoff will increase only by 1.62%.
Arctic, Antarctic, and Alpine Research | 2007
Qingbai Wu; Xianfu Dong; Yongzhi Liu; Huijun Jin
ABSTRACT Monitoring of permafrost along the Qinghai-Tibet (Xizang) Highway shows that there is a large difference in the response of permafrost to climate change and to engineering construction. The change in cold (<−1.5°C) permafrost is greater than that in warm (≥−1.5°C) permafrost under the effect of climate change, while the cold permafrost is less sensitive to the disturbances from engineering activities. However, warm permafrost is very sensitive to both climate warming and the impacts from engineering construction. This is because engineering construction has more immediate and direct impacts on the thermal and moisture regimes of underlying permafrost, and consequently greater influence than climate change during the first few years after engineering construction. Assuming constant annual rates of warming, the surface of cold permafrost would approach the warming due to engineering construction in 50 yr, while it would take about 20 yr in areas with warm permafrost. At a depth of 6 m, the temperature rise under engineered surfaces would be reached within 20 and 5–8 yr in cold and warm permafrost, respectively. Therefore, the warming immediately following disturbances of engineering construction would occur naturally in a few years under warm permafrost, but it would take decades for cold permafrost to have the similar thermal effects. Therefore, climate change will have more direct and immediate impacts on the thermal regime of warm permafrost and on the stability and reliability of engineering infrastructures above warm permafrost.
PLOS ONE | 2014
Sizhong Yang; Xi Wen; Liang Zhao; Yulan Shi; Huijun Jin
The buried China-Russia Crude Oil Pipeline (CRCOP) across the permafrost-associated cold ecosystem in northeastern China carries a risk of contamination to the deep active layers and upper permafrost in case of accidental rupture of the embedded pipeline or migration of oil spills. As many soil microbes are capable of degrading petroleum, knowledge about the intrinsic degraders and the microbial dynamics in the deep subsurface could extend our understanding of the application of in-situ bioremediation. In this study, an experiment was conducted to investigate the bacterial communities in response to simulated contamination to deep soil samples by using 454 pyrosequencing amplicons. The result showed that bacterial diversity was reduced after 8-weeks contamination. A shift in bacterial community composition was apparent in crude oil-amended soils with Proteobacteria (esp. α-subdivision) being the dominant phylum, together with Actinobacteria and Firmicutes. The contamination led to enrichment of indigenous bacterial taxa like Novosphingobium, Sphingobium, Caulobacter, Phenylobacterium, Alicylobacillus and Arthrobacter, which are generally capable of degrading polycyclic aromatic hydrocarbons (PAHs). The community shift highlighted the resilience of PAH degraders and their potential for in-situ degradation of crude oil under favorable conditions in the deep soils.
PLOS ONE | 2012
Sizhong Yang; Xi Wen; Huijun Jin; Qingbai Wu
The China-Russia Crude Oil Pipeline (CRCOP) goes through 441 km permafrost soils in northeastern China. The bioremediation in case of oil spills is a major concern. So far, little is known about the indigenous bacteria inhabiting in the permafrost soils along the pipeline. A pilot 454 pyrosequencing analysis on the communities from four selected sites which possess high environment risk along the CRCOP is herein presented. The results reveal an immense bacterial diversity than previously anticipated. A total of 14448 OTUs with 84834 reads are identified, which could be assigned into 39 different phyla, and 223 families or 386 genera. Only five phyla sustain a mean OTU abundance more than 5% in all the samples, but they altogether account for 85.08% of total reads. Proteobacteria accounts for 41.65% of the total OTUs or 45% of the reads across all samples, and its proportion generally increases with soil depth, but OTUs numerically decline. Among Proteobacteria, the abundance of Beta-, Alpha-, Delta- and Gamma- subdivisions average to 38.7% (2331 OTUs), 37.5% (2257 OTUs), 10.35% (616 OTUs), and 6.21% (374 OTUs), respectively. Acidobacteria (esp. Acidobacteriaceae), Actinobacteria (esp. Intrasporangiaceae), Bacteroidetes (esp. Sphingobacteria and Flavobacteria) and Chloroflexi (esp. Anaerolineaceae) are also very common, accounting for 8.56% (1237 OTUs), 7.86% (1136 OTUs); 7.35% (1063 OTUs) and 8.27% (1195 OTUs) of total libraries, respectively. The ordination analysis indicates that bacteria communities in the upper active layer cluster together (similar), while bacterial consortia from the lower active layer and permafrost table scatter (less similar). The abundance of Rhodococcus (12 OTUs), Pseudomonas (71 OTUs) and Sphingomonas (87 OTUs) is even less (<0.01%). This effort to profile the background diversity may set the first stage for better evaluating the bacterial dynamics in response to accidental oil spills.
Scientific Reports | 2016
Sizhong Yang; Xi Wen; Yulan Shi; Susanne Liebner; Huijun Jin; Amedea Perfumo
Oil spills from pipeline ruptures are a major source of terrestrial petroleum pollution in cold regions. However, our knowledge of the bacterial response to crude oil contamination in cold regions remains to be further expanded, especially in terms of community shifts and potential development of hydrocarbon degraders. In this study we investigated changes of microbial diversity, population size and keystone taxa in permafrost soils at four different sites along the China-Russia crude oil pipeline prior to and after perturbation with crude oil. We found that crude oil caused a decrease of cell numbers together with a reduction of the species richness and shifts in the dominant phylotypes, while bacterial community diversity was highly site-specific after exposure to crude oil, reflecting different environmental conditions. Keystone taxa that strongly co-occurred were found to form networks based on trophic interactions, that is co-metabolism regarding degradation of hydrocarbons (in contaminated samples) or syntrophic carbon cycling (in uncontaminated samples). With this study we demonstrate that after severe crude oil contamination a rapid establishment of endemic hydrocarbon degrading communities takes place under favorable temperature conditions. Therefore, both endemism and trophic correlations of bacterial degraders need to be considered in order to develop effective cleanup strategies.
Science China-earth Sciences | 1999
Qi Feng; Huijun Jin; Zhizhu Su
Climatic changes in the Tarim River basin since 12 kaBP were divided into four stages based on the analyses of sedimentary phase, the features of some climatic and environmental biomarks in the sedimentary strata and desert evolution. During the Holocene, cool-dry and temperate-dry climates resulted in apparent alluvial-fluvial and weak aeolian activities. During 10–8 kaBP, the climate was dry and cold, large-scale sand dunes activities led to regional deeert expansion. During the hypsithermal (8–3 kaBP), the climate was dry and warm, shifting sand areas decreased and a lot of sand dunes were fixed along the banks of the Tarim River and its tributaries, lowlands and lakes. As a result, fluvial-alluvial areas increased. Since 3 kaBP, the aeolian activity and sandstorms have been enhancing due to the combined influences of climatic warming and illogicill exploitation of land and water resources. The climate in the Tarim River basin have been persistently dry and alternated by warm and cold periods. Consequently, the sedimentary environments have varied fmm desert steppe to desert, and strongly influenced by periphery mountains and global climatic fluctuations.
Science of The Total Environment | 2017
Yuzhong Yang; Qingbai Wu; Yandong Hou; Zhongqiong Zhang; Jing Zhan; Siru Gao; Huijun Jin
Permafrost degradation on the Qinghai-Tibet Plateau (QTP) will substantially alter the surface runoff discharge and generation, which changes the recharge processes and influences the hydrological cycle on the QTP. Hydrological connections between different water bodies and the influence of thawing permafrost (ground ice) are not well understood on the QTP. This study applied water stable isotopic method to investigate the permafrost hydrological variabilities in Beiluhe Basin (BLB) on Central QTP. Isotopic variations of precipitation, river flow, thermokarst lake, and near-surface ground ice were identified to figure out the moisture source of them, and to elaborate the hydrological connections in permafrost region. Results suggested that isotopic seasonalities in precipitation is evident, it is showing more positive values in summer seasons, and negative values in winter seasons. Stable isotopes of river flow are mainly distributed in the range of precipitation which is indicative of important replenishment from precipitation. δ18O, δD of thermokarst lakes are more positive than precipitation, indicating of basin-scale evaporation of lake water. Comparison of δI values in different water bodies shows that hydrology of thermokarst lakes was related to thawing of permafrost (ground ice) and precipitation. Near-surface ground ice in BLB exhibits different isotopic characteristics, and generates a special δD-δ18O relationship (freezing line): δD=5.81δ18O-23.02, which reflects typical freezing of liquid water. From isotopic analysis, it is inferred that near-surface ground ice was mainly recharged by precipitation and active layer water. Stable isotopic and conceptual model is suggestive of striking hydrological connections between precipitation, river flow, thermokarst lake, and ground ice under degrading permafrost. This research provides fundamental comprehensions into the hydrological processes in permafrost regions on QTP, which should be considered in investigating the influence of thawing permafrost on the hydrological cycle on QTP.
Science of The Total Environment | 2018
Dongliang Luo; Huijun Jin; Qingbai Wu; Victor F. Bense; Ruixia He; Qiang Ma; Shuhui Gao; Xiaoying Jin; Lanzhi Lü
Ecology, hydrology, and natural resources in the source areas of the Yangtze and Yellow rivers (SAYYR) are closely linked to interactions between climate and permafrost. However, a comprehensive study of the interactions is currently hampered by sparsely- and unevenly-distributed monitoring sites and limited field investigations. In this study, the thermal regime of warm-dry permafrost in the SAYYR was systematically analyzed based on extensive data collected during 2010-2016 of air temperature (Ta), ground surface temperature (GST) and ground temperature across a range of areas with contrasting land-surface characteristics. Mean annual Ta (MAAT) and mean annual GST (MAGST) were regionally averaged at -3.19±0.71°C and -0.40±1.26°C. There is a close relationship between GST and Ta (R2=0.8477) as obtained by a linear regression analysis with all available daily averages. The mean annual temperature at the bottom of the active layer (TTOP) was regionally averaged at -0.72±1.01°C and mostly in the range of -1.0°C and 0°C except at Chalaping (~-2.0°C). Surface offset (MAGST-MAAT) was regionally averaged at 2.54±0.71°C. Thermal offset (TTOP-MAGST) was regionally averaged at -0.17±0.84°C, which was generally within -0.5°C and 0.5°C. Relatively consistent thermal conductivity between the thawed and frozen states of the soils may be responsible for the small thermal offset. Active layer thickness was generally smaller at Chalaping than that on other parts of the QTP, presumably due to smaller climatic continentality index and the thermal dampening of surface temperature variability under the presence of dense vegetation and thick peaty substrates. We conclude that the accurate mapping of permafrost on the rugged elevational QTP could be potentially obtained by correlating the parameters of GST, thermal offset, and temperature gradient in the shallow permafrost.
Scientific Reports | 2017
Qingbai Wu; Wenbing Yu; Huijun Jin
Desertification of tundra regions may form an escalating cycle with permafrost degradation where more permafrost thaw leads to continued desertification. This traditional viewpoint has been challenged in recent reports that state desertification protects the underlying permafrost. However, our measurements of soil temperature from nine sites in the Honglianghe River Basin, interior Qinghai-Tibet Plateau, show that desertification can degrade permafrost. If one compares the permafrost temperatures at sites with thin sand covers (e.g. site Yu-7, permafrost temperature of −0.64 °C; site Yu-6, permafrost temperature of −1.15 °C) with that of site Xie-1 (−0.65 °C, with a 120-cm-thick sand cover), the permafrost temperature is not significantly different. It is clear that a thick sand cover does not influence the underlying permafrost temperature. Our observations support traditional geocryological knowledge which states that, under most circumstances, desertification does not protect, but rather degrades, permafrost.