Huilan Wu
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huilan Wu.
Nature | 2002
Zhengtang Guo; William F. Ruddiman; Qingzhen Hao; Huilan Wu; Yansong Qiao; Rixiang Zhu; Shuzhen Peng; Jianjing Wei; Baoyin Yuan; Tungsheng Liu
The initial desertification in the Asian interior is thought to be one of the most prominent climate changes in the Northern Hemisphere during the Cenozoic era. But the dating of this transition is uncertain, partly because desert sediments are usually scattered, discontinuous and difficult to date. Here we report nearly continuous aeolian deposits covering the interval from 22 to 6.2 million years ago, on the basis of palaeomagnetic measurements and fossil evidence. A total of 231 visually definable aeolian layers occur as brownish loesses interbedded with reddish soils. This new evidence indicates that large source areas of aeolian dust and energetic winter monsoon winds to transport the material must have existed in the interior of Asia by the early Miocene epoch, at least 14 million years earlier than previously thought. Regional tectonic changes and ongoing global cooling are probable causes of these changes in aridity and circulation in Asia.
Nature | 2013
Hong-Qing Ling; Shancen Zhao; Dongcheng Liu; Wang J; Hua Sun; Chi Zhang; Huajie Fan; Dong Li; Lingli Dong; Yong Tao; Chuan Gao; Huilan Wu; Yiwen Li; Yan Cui; Xiaosen Guo; Shusong Zheng; Biao Wang; Kang Yu; Qinsi Liang; Wenlong Yang; Xueyuan Lou; Jie Chen; Mingji Feng; Jianbo Jian; Xiaofei Zhang; Guangbin Luo; Ying Jiang; Junjie Liu; Zhaobao Wang; Yuhui Sha
Bread wheat (Triticum aestivum, AABBDD) is one of the most widely cultivated and consumed food crops in the world. However, the complex polyploid nature of its genome makes genetic and functional analyses extremely challenging. The A genome, as a basic genome of bread wheat and other polyploid wheats, for example, T. turgidum (AABB), T. timopheevii (AAGG) and T. zhukovskyi (AAGGAmAm), is central to wheat evolution, domestication and genetic improvement. The progenitor species of the A genome is the diploid wild einkorn wheat T. urartu, which resembles cultivated wheat more extensively than do Aegilops speltoides (the ancestor of the B genome) and Ae. tauschii (the donor of the D genome), especially in the morphology and development of spike and seed. Here we present the generation, assembly and analysis of a whole-genome shotgun draft sequence of the T. urartu genome. We identified protein-coding gene models, performed genome structure analyses and assessed its utility for analysing agronomically important genes and for developing molecular markers. Our T. urartu genome assembly provides a diploid reference for analysis of polyploid wheat genomes and is a valuable resource for the genetic improvement of wheat.
Cell Research | 2008
Youxi Yuan; Huilan Wu; Ning Wang; Jie Li; Weina Zhao; Juan Du; Daowen Wang; Hong-Qing Ling
Iron is an essential element for plant growth and development. Iron homeostasis in plants is tightly regulated at both transcriptional and posttranscriptional level. Several bHLH transcription factors involved in iron homeostasis have been identified recently. However, their regulatory mechanisms remain unknown. In this work, we demonstrate that the transcription factor FIT interacted with AtbHLH38 and AtbHLH39 and directly conferred the expression regulation of iron uptake genes for iron homeostasis in Arabidopsis. Yeast two-hybrid analysis and transient expression in Arabidopsis protoplasts showed that AtbHLH38 or AtbHLH39 interacted with FIT, a central transcription factor involved in iron homeostasis in Arabidopsis. Expression of FIT/AtbHLH38 or FIT/AtbHLH39 in yeast cells activated GUS expression driven by ferric chelate reductase (FRO2) and ferrous transporter (IRT1) promoters. Overexpression of FIT with either AtbHLH38 or AtbHLH39 in plants converted the expression of the iron uptake genes FRO2 and IRT1 from induced to constitutive. Further analysis revealed that FRO2 and IRT1 were not regulated at the posttranscriptional level in these plants because IRT1 protein accumulation and high ferric chelate reductase activity were detected in the overexpression plants under both iron deficiency and iron sufficiency. The double overexpression plants accumulated more iron in their shoots than wild type or the plants overexpressing either AtbHLH38, AtbHLH39 or FIT. Our data support that ferric-chelate reductase FRO2 and ferrous-transporter IRT1 are the targets of the three transcription factors and the transcription of FRO2 and IRT1 is directly regulated by a complex of FIT/AtbHLH38 or FIT/AtbHLH39.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Yongping Cui; Chang Yu; Yong-Bin Yan; Duanzhuo Li; Yingrui Li; Thibaut Jombart; L. A. Weinert; Zuyun Wang; Zhaobiao Guo; Lizhi Xu; Yueyang Zhang; Huisong Zheng; Nan Qin; Xueshan Xiao; Mingzhu Wu; X.L. Wang; Dongsheng Zhou; Zhizhen Qi; Zongmin Du; Huilan Wu; Xukui Yang; Hongzhi Cao; Hongyang Wang; Jun Wang; S. Yao; A. Rakin; Daniel Falush; Francois Balloux; Mark Achtman; Yajun Song
The genetic diversity of Yersinia pestis, the etiologic agent of plague, is extremely limited because of its recent origin coupled with a slow clock rate. Here we identified 2,326 SNPs from 133 genomes of Y. pestis strains that were isolated in China and elsewhere. These SNPs define the genealogy of Y. pestis since its most recent common ancestor. All but 28 of these SNPs represented mutations that happened only once within the genealogy, and they were distributed essentially at random among individual genes. Only seven genes contained a significant excess of nonsynonymous SNP, suggesting that the fixation of SNPs mainly arises via neutral processes, such as genetic drift, rather than Darwinian selection. However, the rate of fixation varies dramatically over the genealogy: the number of SNPs accumulated by different lineages was highly variable and the genealogy contains multiple polytomies, one of which resulted in four branches near the time of the Black Death. We suggest that demographic changes can affect the speed of evolution in epidemic pathogens even in the absence of natural selection, and hypothesize that neutral SNPs are fixed rapidly during intermittent epidemics and outbreaks.
Molecular Plant | 2013
Ning Wang; Yan Cui; Yi Liu; Huajie Fan; Juan Du; Zongan Huang; Youxi Yuan; Huilan Wu; Hong-Qing Ling
The Ib subgroup of the bHLH gene family in Arabidopsis contains four members (AtbHLH38, AtbHLH39, AtbHLH100, and AtbHLH101). AtbHLH38 and AtbHLH39 were previously confirmed to interact with FER-like iron deficiency induced transcription factor (FIT), directly functioning in activation of the expression of ferric-chelate reductase FRO2 and high-affinity ferrous iron transporter IRT1. In this work, we characterized the functions of AtbHLH100 and AtbHLH101 in the regulation of the iron-deficiency responses and uptake. Yeast two-hybrid analysis and bimolecular fluorescence complementation assay demonstrated that both AtbHLH100 and AtbHLH101 could interact with FIT. Dual expression of either AtbHLH100 or AtbHLH101 with FIT in yeast cells activated the GUS expression driven by promoters of FRO2 and IRT1. The plants overexpressing FIT together with AtbHLH101 showed constitutive expression of FRO2 and IRT1 in roots, and accumulated more iron in shoots. Further, the single, double, and triple knockout mutants of AtbHLH38, AtbHLH39, AtbHLH100, and AtbHLH101 were generated and characterized. The FRO2 and IRT1 expression in roots and the iron content in shoots were more drastically decreased in the triple knockout mutant of AtbHLH39, AtbHLH100, and AtbHLH101 than that of the other available double and triple mutants of the four genes. Comparison of the physiological responses as well as the expression of FRO2 and IRT1 in the multiple knockout mutants under iron deficiency revealed that AtbHLH100, AtbHLH38, AtbHLH101, and AtbHLH39 played the gradually increased important role in the iron-deficiency responses and uptake. Taken all together, we conclude that the four Ib subgroup bHLH proteins are required and possess redundant functions with differential significance for activation of iron-deficiency responses and uptake in Arabidopsis.
Plant Physiology | 2012
Huilan Wu; Chunlin Chen; Juan Du; Hongfei Liu; Yan Cui; Yue Zhang; Yujing He; Yiqing Wang; Chengcai Chu; Zongyun Feng; Junming Li; Hong-Qing Ling
Cadmium (Cd) is toxic to plant cells. Under Cd exposure, the plant displayed leaf chlorosis, which is a typical symptom of iron (Fe) deficiency. Interactions of Cd with Fe have been reported. However, the molecular mechanisms of Cd-Fe interactions are not well understood. Here, we showed that FER-like Deficiency Induced Transcripition Factor (FIT), AtbHLH38, and AtbHLH39, three basic helix-loop-helix transcription factors involved in Fe homeostasis in plants, also play important roles in Cd tolerance. The gene expression analysis showed that the expression of FIT, AtbHLH38, and AtbHLH39 was up-regulated in the roots of plants treated with Cd. The plants overexpressing AtbHLH39 and double-overexpressing FIT/AtbHLH38 and FIT/AtbHLH39 exhibited more tolerance to Cd exposure than wild type, whereas no Cd tolerance was observed in plants overexpressing either AtbHLH38 or FIT. Further analysis revealed that co-overexpression of FIT with AtbHLH38 or AtbHLH39 constitutively activated the expression of Heavy Metal Associated3 (HMA3), Metal Tolerance Protein3 (MTP3), Iron Regulated Transporter2 (IRT2), and Iron Regulated Gene2 (IREG2), which are involved in the heavy metal detoxification in Arabidopsis (Arabidopis thaliana). Moreover, co-overexpression of FIT with AtbHLH38 or AtbHLH39 also enhanced the expression of NICOTIANAMINE SYNTHETASE1 (NAS1) and NAS2, resulting in the accumulation of nicotiananamine, a crucial chelator for Fe transportation and homeostasis. Finally, we showed that maintaining high Fe content in shoots under Cd exposure could alleviate the Cd toxicity. Our results provide new insight to understand the molecular mechanisms of Cd tolerance in plants.
Nature Communications | 2012
M. S. Li; Huilan Wu; Zonggang Luo; Yudong Xia; Jiuqiang Guan; Tobias Wang; Yiren Gu; Longyun Chen; Kerang Zhang; Juncai Ma; Yuping Liu; Z Zhong; J Nie; Songping Zhou; Zhiping Mu; X.L. Wang; Jing Qu; L Jing; Hongyang Wang; Songbo Huang; Na Yi; Zuyun Wang; D Xi; Jun Wang; Guangliang Yin; Lishun Wang; Na Li; Zhimao Jiang; Qiulei Lang; Hui Xiao
It is evident that epigenetic factors, especially DNA methylation, have essential roles in obesity development. Here, using pig as a model, we investigate the systematic association between DNA methylation and obesity. We sample eight variant adipose and two distinct skeletal muscle tissues from three pig breeds living within comparable environments but displaying distinct fat level. We generate 1,381 Gb of sequence data from 180 methylated DNA immunoprecipitation libraries, and provide a genome-wide DNA methylation map as well as a gene expression map for adipose and muscle studies. The analysis shows global similarity and difference among breeds, sexes and anatomic locations, and identifies the differentially methylated regions. The differentially methylated regions in promoters are highly associated with obesity development via expression repression of both known obesity-related genes and novel genes. This comprehensive map provides a solid basis for exploring epigenetic mechanisms of adipose deposition and muscle growth.
Nature Communications | 2013
Jishi Chen; Quanfei Huang; Dongying Gao; Jun Wang; Yongshan Lang; Tiebang Liu; Bowen Li; Zetao Bai; Luis Goicoechea J; Chengzhi Liang; Caifen Chen; Wenbin Zhang; Silong Sun; Yi Liao; X. Zhang; Lixin Yang; Chi Song; Wang M; Junjie Shi; G.R. Liu; Jinlei Liu; Huanmin Zhou; Wen-Wu Zhou; Qingyi Yu; Na An; Yuning Chen; Qingle Cai; Bingqiang Wang; Boqing Liu; Josine L. Min
The wild species of the genus Oryza contain a largely untapped reservoir of agronomically important genes for rice improvement. Here we report the 261-Mb de novo assembled genome sequence of Oryza brachyantha. Low activity of long-terminal repeat retrotransposons and massive internal deletions of ancient long-terminal repeat elements lead to the compact genome of Oryza brachyantha. We model 32,038 protein-coding genes in the Oryza brachyantha genome, of which only 70% are located in collinear positions in comparison with the rice genome. Analysing breakpoints of non-collinear genes suggests that double-strand break repair through non-homologous end joining has an important role in gene movement and erosion of collinearity in the Oryza genomes. Transition of euchromatin to heterochromatin in the rice genome is accompanied by segmental and tandem duplications, further expanded by transposable element insertions. The high-quality reference genome sequence of Oryza brachyantha provides an important resource for functional and evolutionary studies in the genus Oryza.
New Phytologist | 2011
Xiang-Yan Meng; Jie Qin; Li-Hong Wang; Guilan Duan; Guo-Xin Sun; Huilan Wu; Chengcai Chu; Hong-Qing Ling; Barry P. Rosen; Yong-Guan Zhu
• Biotransformation of arsenic includes oxidation, reduction, methylation, and conversion to more complex organic arsenicals. Members of the class of arsenite (As(III)) S-adenosylmethyltransferase enzymes catalyze As(III) methylation to a variety of mono-, di-, and trimethylated species, some of which are less toxic than As(III) itself. However, no methyltransferase gene has been identified in plants. • Here, an arsM gene from the soil bacterium Rhodopseudomonas palustris was expressed in Japonica rice (Oryza sativa) cv Nipponbare, and the transgenic rice produced methylated arsenic species, which were measured by inductively coupled plasma mass spectrometry (ICP-MS) and high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC-ICP-MS). • Both monomethylarsenate (MAs(V)) and dimethylarsenate (DMAs(V)) were detected in the roots and shoots of transgenic rice. After 12 d exposure to As(III), the transgenic rice gave off 10-fold greater volatile arsenicals. • The present study demonstrates that expression of an arsM gene in rice induces arsenic methylation and volatilization, theoretically providing a potential stratagem for phytoremediation.
Cell Research | 2008
Danyu Kong; Yuxing Zhu; Huilan Wu; Xudong Cheng; Hui Liang; Hong-Qing Ling
Thiamine (vitamin B1) is an essential compound for organisms. It contains a pyrimidine ring structure and a thiazole ring structure. These two moieties of thiamine are synthesized independently and then coupled together. Here we report the molecular characterization of AtTHIC, which is involved in thiamine biosynthesis in Arabidopsis. AtTHIC is similar to Escherichia coli ThiC, which is involved in pyrimidine biosynthesis in prokaryotes. Heterologous expression of AtTHIC could functionally complement the thiC knock-out mutant of E. coli. Downregulation of AtTHIC expression by T-DNA insertion at its promoter region resulted in a drastic reduction of thiamine content in plants and the knock-down mutant thic1 showed albino (white leaves) and lethal phenotypes under the normal culture conditions. The thic1 mutant could be rescued by supplementation of thiamine and its defect functions could be complemented by expression of AtTHIC cDNA. Transient expression analysis revealed that the AtTHIC protein targets plastids and chloroplasts. AtTHIC was strongly expressed in leaves, flowers and siliques and the transcription of AtTHIC was downregulated by extrinsic thiamine. In conclusion, AtTHIC is a gene involved in pyrimidine synthesis in the thiamine biosynthesis pathway of Arabidopsis, and our results provide some new clues for elucidating the pathway of thiamine biosynthesis in plants.