Huiliang Li
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huiliang Li.
Science | 2014
Ian McKenzie; David Ohayon; Huiliang Li; Joana Paes de Faria; Ben Emery; Koujiro Tohyama; William D. Richardson
Myelin-forming oligodendrocytes (OLs) are formed continuously in the healthy adult brain. In this work, we study the function of these late-forming cells and the myelin they produce. Learning a new motor skill (such as juggling) alters the structure of the brain’s white matter, which contains many OLs, suggesting that late-born OLs might contribute to motor learning. Consistent with this idea, we show that production of newly formed OLs is briefly accelerated in mice that learn a new skill (running on a “complex wheel” with irregularly spaced rungs). By genetically manipulating the transcription factor myelin regulatory factor in OL precursors, we blocked production of new OLs during adulthood without affecting preexisting OLs or myelin. This prevented the mice from mastering the complex wheel. Thus, generation of new OLs and myelin is important for learning motor skills. Mice need myelinating cells in the brain to master an unpredictable motor task. [Also see Perspective by Long and Corfas] Learning requires the brain to change We may be leveraging change in our brains more than we have thought. Ohayon et al. knocked out cells responsible for laying down insulating myelin along neuronal axons in the brains of otherwise normal adult mice (see the Perspective by Long and Corfas). The mice lacking the myelin-forming cells were less able to learn a new motor skill involving running on a wheel with unevenly spaced bars. Although we may not run on a wheel, when trying to master new motor skills such as juggling, we too may well rely on similar myelin-producing cells. Science, this issue p. 318; see also p. 298
Science | 2012
Hui-Hsin Tsai; Huiliang Li; Luis C. Fuentealba; Anna V. Molofsky; Raquel Taveira-Marques; Helin Zhuang; April Tenney; Alice T. Murnen; Stephen P.J. Fancy; Florian T. Merkle; Nicoletta Kessaris; Arturo Alvarez-Buylla; William D. Richardson; David H. Rowitch
Born to Stay Together For as many neurons as there are in the brain, there are many more astrocytes. These backstage workers perform a variety of functions, such as sustaining the blood-brain barrier and providing a stabilized environment for neurons. Diversity of astrocyte function is reflected in different molecular expression profiles. Tsai et al. (p. 358, published online 28 June) selectively labeled astrocytes that originated from different domains of the mouse spinal cord and found that not all astrocytes are created equal: Neighborhoods of astrocytes were defined by shared birthplaces. In the mouse brain, astrocytes are not as interchangeable as previously thought. Astrocytes, the most abundant cell population in the central nervous system (CNS), are essential for normal neurological function. We show that astrocytes are allocated to spatial domains in mouse spinal cord and brain in accordance with their embryonic sites of origin in the ventricular zone. These domains remain stable throughout life without evidence of secondary tangential migration, even after acute CNS injury. Domain-specific depletion of astrocytes in ventral spinal cord resulted in abnormal motor neuron synaptogenesis, which was not rescued by immigration of astrocytes from adjoining regions. Our findings demonstrate that region-restricted astrocyte allocation is a general CNS phenomenon and reveal intrinsic limitations of the astroglial response to injury.
Science | 2016
Sueli Marques; Amit Zeisel; Simone Codeluppi; David van Bruggen; Ana Mendanha Falcão; Lin Xiao; Huiliang Li; Martin Häring; Hannah Hochgerner; Roman A. Romanov; Daniel Gyllborg; Ana B. Muñoz-Manchado; Gioele La Manno; Peter Lönnerberg; Elisa M. Floriddia; Fatemah Rezayee; Patrik Ernfors; Ernest Arenas; Jens Hjerling-Leffler; Tibor Harkany; William D. Richardson; Sten Linnarsson; Gonçalo Castelo-Branco
One size does not fit all Oligodendrocytes are best known for their ability to myelinate brain neurons, thus increasing the speed of signal transmission. Marques et al. surveyed oligodendrocytes of developing mice and found unexpected heterogeneity. Transcriptional analysis identified 12 populations, ranging from precursors to mature oligodendrocytes. Transcriptional profiles diverged as the oligodendrocytes matured, building distinct populations. One population was responsive to motor learning, and another, with a different transcriptome, traveled along blood vessels. Science, this issue p. 1326 Brain oligodendrocytes express transcriptional heterogeneity between brain regions and age of development. Oligodendrocytes have been considered as a functionally homogeneous population in the central nervous system (CNS). We performed single-cell RNA sequencing on 5072 cells of the oligodendrocyte lineage from 10 regions of the mouse juvenile and adult CNS. Thirteen distinct populations were identified, 12 of which represent a continuum from Pdgfra+ oligodendrocyte precursor cells (OPCs) to distinct mature oligodendrocytes. Initial stages of differentiation were similar across the juvenile CNS, whereas subsets of mature oligodendrocytes were enriched in specific regions in the adult brain. Newly formed oligodendrocytes were detected in the adult CNS and were responsive to complex motor learning. A second Pdgfra+ population, distinct from OPCs, was found along vessels. Our study reveals the dynamics of oligodendrocyte differentiation and maturation, uncoupling them at a transcriptional level and highlighting oligodendrocyte heterogeneity in the CNS.
The Journal of Neuroscience | 2007
Huiliang Li; Yan Lu; Hazel K. Smith; William D. Richardson
The oligodendrocyte lineage genes (Olig1/2), encoding basic helix-loop-helix transcription factors, were first identified in screens for master regulators of oligodendrocyte development. OLIG1 is important for differentiation of oligodendrocyte precursors into myelin-forming oligodendrocytes during development and is thought to play a crucial role in remyelination during multiple sclerosis. However, it is still unclear how OLIG1 interacts with its transcriptional cofactors and DNA targets. OLIG1 was reportedly restricted to mammals, but we demonstrate here that zebrafish and other teleosts also possess an OLIG1 homolog. In zebrafish, as in mammals, Olig1 is expressed in the oligodendrocyte lineage. Olig1 associates physically with another myelin-associated transcription factor, Sox10, and the Olig1/Sox10 complex activates mbp (myelin basic protein) transcription via conserved DNA sequence motifs in the mbp promoter region. In contrast, Olig2 does not bind to Sox10 in zebrafish, although both OLIG1 and OLIG2 bind SOX10 in mouse.
The Journal of Neuroscience | 2012
Laura Clarke; Kaylene M. Young; Nicola B. Hamilton; Huiliang Li; William D. Richardson; David Attwell
Oligodendrocyte progenitor cells (OPCs) in the postnatal mouse corpus callosum (CC) and motor cortex (Ctx) reportedly generate only oligodendrocytes (OLs), whereas those in the piriform cortex may also generate neurons. OPCs have also been subdivided based on their expression of voltage-gated ion channels, ability to respond to neuronal activity, and proliferative state. To determine whether OPCs in the piriform cortex have inherently different physiological properties from those in the CC and Ctx, we studied acute brain slices from postnatal transgenic mice in which GFP expression identifies OL lineage cells. We whole-cell patch clamped GFP-expressing (GFP+) cells within the CC, Ctx, and anterior piriform cortex (aPC) and used prelabeling with 5-ethynyl-2′-deoxyuridine (EdU) to assess cell proliferation. After recording, slices were immunolabeled and OPCs were defined by strong expression of NG2. NG2+ OPCs in the white and gray matter proliferated and coexpressed PDGFRα and voltage-gated Na+ channels (INa). Approximately 70% of OPCs were capable of generating regenerative depolarizations. In addition to OLIG2+ NG2+ INa+ OPCs and OLIG2+ NG2neg INaneg OLs, we identified cells with low levels of NG2 limited to the soma or the base of some processes. These cells had a significantly reduced INa and a reduced ability to incorporate EdU when compared with OPCs and probably correspond to early differentiating OLs. By combining EdU labeling and lineage tracing using Pdgfrα–CreERT2 : R26R–YFP transgenic mice, we double labeled OPCs and traced their fate in the postnatal brain. These OPCs generated OLs but did not generate neurons in the aPC or elsewhere at any time that we examined.
Neuron | 2011
Huiliang Li; Joana Paes de Faria; Paul Andrew; Justyna Nitarska; William D. Richardson
Summary A fundamental feature of central nervous system development is that neurons are generated before glia. In the embryonic spinal cord, for example, a group of neuroepithelial stem cells (NSCs) generates motor neurons (MNs), before switching abruptly to oligodendrocyte precursors (OLPs). We asked how transcription factor OLIG2 participates in this MN-OLP fate switch. We found that Serine 147 in the helix-loop-helix domain of OLIG2 was phosphorylated during MN production and dephosphorylated at the onset of OLP genesis. Mutating Serine 147 to Alanine (S147A) abolished MN production without preventing OLP production in transgenic mice, chicks, or cultured P19 cells. We conclude that S147 phosphorylation, possibly by protein kinase A, is required for MN but not OLP genesis and propose that dephosphorylation triggers the MN-OLP switch. Wild-type OLIG2 forms stable homodimers, whereas mutant (unphosphorylated) OLIG2S147A prefers to form heterodimers with Neurogenin 2 or other bHLH partners, suggesting a molecular basis for the switch.
Nature Neuroscience | 2016
Lin Xiao; David Ohayon; Ian McKenzie; Alexander Sinclair-Wilson; Jordan L Wright; Alexander Fudge; Ben Emery; Huiliang Li; William D. Richardson
We identified mRNA encoding the ecto-enzyme Enpp6 as a marker of newly forming oligodendrocytes, and used Enpp6 in situ hybridization to track oligodendrocyte differentiation in adult mice as they learned a motor skill (running on a wheel with unevenly spaced rungs). Within just 2.5 h of exposure to the complex wheel, production of Enpp6-expressing immature oligodendrocytes was accelerated in subcortical white matter; within 4 h, it was accelerated in motor cortex. Conditional deletion of myelin regulatory factor (Myrf) in oligodendrocyte precursors blocked formation of new Enpp6+ oligodendrocytes and impaired learning within the same ∼2−3 h time frame. This very early requirement for oligodendrocytes suggests a direct and active role in learning, closely linked to synaptic strengthening. Running performance of normal mice continued to improve over the following week accompanied by secondary waves of oligodendrocyte precursor proliferation and differentiation. We concluded that new oligodendrocytes contribute to both early and late stages of motor skill learning.
Nature Neuroscience | 2009
Huiliang Li; William D. Richardson
A study shows that the histone deacetylases HDAC1 and HDAC2 stimulate oligodendrocyte differentiation by antagonizing the inhibitory action of Wnt signaling, linking genetic and epigenetic control of oligodendrocyte development.
Brain Research | 2016
Huiliang Li; William D. Richardson
Myelin is a specialized subcellular structure that evolved uniquely in vertebrates. A myelinated axon conducts action potentials many times faster than an unmyelinated axon of the same diameter; for the same conduction speed, the unmyelinated axon would need a much larger diameter and volume than its myelinated counterpart. Hence myelin speeds information transfer and saves space, allowing the evolution of a powerful yet portable brain. Myelination in the central nervous system (CNS) is controlled by a gene regulatory program that features a number of master transcriptional regulators including Olig1, Olig2 and Myrf. Olig family genes evolved from a single ancestral gene in non-chordates. Olig2, which executes multiple functions with regard to oligodendrocyte identity and development in vertebrates, might have evolved functional versatility through post-translational modification, especially phosphorylation, as illustrated by its evolutionarily conserved serine/threonine phospho-acceptor sites and its accumulation of serine residues during more recent stages of vertebrate evolution. Olig1, derived from a duplicated copy of Olig2 in early bony fish, is involved in oligodendrocyte development and is critical to remyelination in bony vertebrates, but is lost in birds. The origin of Myrf orthologs might be the result of DNA integration between an invading phage or bacterium and an early protist, producing a fusion protein capable of self-cleavage and DNA binding. Myrf seems to have adopted new functions in early vertebrates - initiation of the CNS myelination program as well as the maintenance of mature oligodendrocyte identity and myelin structure - by developing new ways to interact with DNA motifs specific to myelin genes. This article is part of a Special Issue entitled SI: Myelin Evolution.
BMC Neuroscience | 2014
Joana Paes de Faria; Nicoletta Kessaris; Paul Andrew; William D. Richardson; Huiliang Li
BackgroundOlig1 and Olig2, encoding closely related basic helix-loop-helix transcription factors, were originally identified in screens for glial-specific genes. Olig1 and Olig2 are both expressed in restricted parts of the neuroepithelium of the embryonic spinal cord and telencephalon and subsequently in oligodendrocyte lineage cells throughout life. In the spinal cord, Olig2 plays a crucial role in the development of oligodendrocytes and motor neurons, and both cell types are lost from Olig2 null mutant mice. The role of Olig1 has been more cryptic. It was initially reported that Olig1 null mice (with a Cre-Pgk-Neo cassette at the Olig1 locus) have a mild developmental phenotype characterized by a slight delay in oligodendrocyte differentiation. However, a subsequent study of the same line following removal of Pgk-Neo (leaving Olig1-Cre) found severe disruption of oligodendrocyte production, myelination failure and early postnatal lethality. A plausible explanation was proposed, that the highly expressed Pgk-Neo cassette in the original line might have up-regulated the neighbouring Olig2 gene, compensating for loss of Olig1. However, this was not tested, so the importance of Olig1 for oligodendrocyte development has remained unclear.ResultsWe generated two independent lines of Olig1 null mice. Both lines had a mild phenotype featuring slightly delayed oligodendrocyte differentiation and maturation but no long-term effect. In addition, we found that Olig2 transcripts were not up-regulated in our Olig1 null mice.ConclusionsOur findings support the original conclusion that Olig1 plays a minor and non-essential role in oligodendrocyte development and have implications for the interpretation of studies based on Olig1 deficient mice (and perhaps Olig1-Cre mice) from different sources.