Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where HuiLing Lu is active.

Publication


Featured researches published by HuiLing Lu.


Journal of Endocrinology | 2007

Reduced adipose tissue triglyceride synthesis and increased muscle fatty acid oxidation in C5L2 knockout mice

Sabina Paglialunga; Patrick Schrauwen; Christian Roy; Esther Moonen-Kornips; HuiLing Lu; Matthijs K. C. Hesselink; Yves Deshaies; Denis Richard; Katherine Cianflone

Activation of C5L2, a G-protein-coupled receptor, by acylation-stimulating protein/complement C3adesArg (ASP/C3adesArg) has been shown to stimulate triglyceride (TG) synthesis in both mature adipocytes and preadipocytes. ASP is an adipocyte-derived hormone that acts by increasing diacylglycerol acyltransferase activity and glucose transport. ASP-deficient mice (C3KO, precursor protein) are lean, display delayed postprandial TG clearance, increased food intake, and increased energy expenditure. The present study shows that C5L2KO mice on a low fat diet are hyperphagic (~60% increase in total food intake) yet maintain the same body weight and adipose tissue mass as wild-type (WT) controls. However, on a high fat diet, average adipocyte size and adipose tissue TG/DNA content were significantly reduced and postprandial TG clearance was delayed in C5L2KO. Adipose tissue TG synthesis (WT: 47.2 +/- 5.6 versus C5L2KO: 7.8 +/- 1.8 pmol/microg protein, P < 0.001), TG lipolysis (WT: 227.6 +/- 36.4 versus C5L2KO: 45.8 +/- 5.0 nmol/microg protein, P < 0.001), and fatty acid re-esterification (WT: 85.3 +/- 2.4% versus C5L2KO: 59.5 +/- 6.8%, P < 0.001) were significantly reduced in C5L2KO mice. Indirect calorimetry measurements revealed C5L2KO mice have unchanged oxygen consumption levels yet reduced respiratory quotient value, suggesting preferential fatty acid utilization over carbohydrate. In agreement, fatty acid oxidation was elevated in heart and skeletal muscle tissue in C5L2KO mice and skeletal muscle levels of uncoupling protein 3 (425.5 +/- 86.3%, P < 0.0001), CD36 (277.6 +/- 49.5%, P < 0.05), cytochrome c (252.6 +/- 33.9%, P < 0.05), and phospho-acetyl CoA carboxylase (118.4 +/- 9.3%, P < 0.05) were significantly increased in C5L2KO mice versus WT (100%). The study shows that in response to reduced TG storage in white adipose tissue, C5L2KO mice have developed a compensatory mechanism of increased muscle fat oxidation.


BMC Medical Genomics | 2010

Association of adipocyte genes with ASP expression: a microarray analysis of subcutaneous and omental adipose tissue in morbidly obese subjects

Robin E MacLaren; Wei Cui; HuiLing Lu; Serge Simard; Katherine Cianflone

BackgroundPrevalence of obesity is increasing to pandemic proportions. However, obese subjects differ in insulin resistance, adipokine production and co-morbidities. Based on fasting plasma analysis, obese subjects were grouped as Low Acylation Stimulating protein (ASP) and Triglyceride (TG) (LAT) vs High ASP and TG (HAT). Subcutaneous (SC) and omental (OM) adipose tissues (n = 21) were analysed by microarray, and biologic pathways in lipid metabolism and inflammation were specifically examined.MethodsLAT and HAT groups were matched in age, obesity, insulin, and glucose, and had similar expression of insulin-related genes (InsR, IRS-1). ASP related genes tended to be increased in the HAT group and were correlated (factor B, adipsin, complement C3, p < 0.01 each). Differences between LAT and HAT group were almost exclusively in SC tissue, with little difference in OM tissue. Increased C5L2 (p < 0.01), an ASP receptor, in HAT suggests a compensatory ASP pathway, associated with increased TG storage.ResultsHAT adipose tissue demonstrated increased lipid related genes for storage (CD36, DGAT1, DGAT2, SCD1, FASN, and LPL), lipolysis (HSL, CES1, perilipin), fatty acid binding proteins (FABP1, FABP3) and adipocyte differentiation markers (CEBPα, CEBPβ, PPARγ). By contrast, oxidation related genes were decreased (AMPK, UCP1, CPT1, FABP7). HAT subjects had increased anti-inflammatory genes TGFB1, TIMP1, TIMP3, and TIMP4 while proinflammatory PIG7 and MMP2 were also significantly increased; all genes, p < 0.025.ConclusionTaken together, the profile of C5L2 receptor, ASP gene expression and metabolic factors in adipose tissue from morbidly obese HAT subjects suggests a compensatory response associated with the increased plasma ASP and TG.


Nutrition & Metabolism | 2006

Thyroid status influence on adiponectin, acylation stimulating protein (ASP) and complement C3 in hyperthyroid and hypothyroid subjects.

Haiying Yu; Yan Yang; Muxun Zhang; HuiLing Lu; Jianhua Zhang; Hongwei Wang; Katherine Cianflone

BackgroundThyroid abnormalities (hyperthyroid and hypothyroid) are accompanied by changes in intermediary metabolism including alterations in body weight, insulin resistance and lipid profile. The aims of this study were to examine plasma ASP, its precursor C3 and adiponectin in hyperthyroid and hypothyroid subjects as compared to controls.MethodsA total of 99 subjects were recruited from endocrinology/out-patient clinics: 46 hyperthyroid subjects, 23 hypothyroid subjects and 30 control subjects. Subjects were evaluated for FT4, FT3, TSH, glucose, insulin, complete lipid profile and the adipokines: adiponectin, acylation stimulating protein (ASP) and complement C3.ResultsHyperthyroidism was associated with a 95% increase in adiponectin (p = 0.0002), a 47% decrease in C3 (p < 0.0001), no change in ASP and increased ASP/C3 ratio (p = 0.0012). Hypothyroidism was associated with a 31% increase in ASP (p = 0.008). Adiponectin and C3 correlated with FT3 (r = 0.383, p = 0.004 and r = -0.277, p = 0.007, respectively) and FT4 (r = 0.464, p = 0.003 and r = -0.225, p = 0.03, respectively). ASP correlated with TSH (r = 0.202, p = 0.04). Adiponectin did not correlate with either ASP or C3, only ASP and C3 correlated (r = -0.197, p = 0.05). Adiponectin was negatively correlated with BMI, total cholesterol and plasma triglyceride, while C3 was positively correlated with BMI and total cholesterol. Surprisingly, adiponectin was positively correlated with insulin (r = 0.293, p = 0.02) and HOMA-IR (r = 0.373, p = 0.003) while C3 was negatively correlated with glucose (r = -0.242, p = 0.022, insulin (r = -0.184, p = 0.05) and HOMA-IR.ConclusionThese changes suggest that thyroid disease may be accompanied by changes in adipokines, which may contribute to the phenotype expressed.


Journal of Cellular Biochemistry | 2008

Palmitate and oleate induction of acylation stimulating protein resistance in 3T3-L1 adipocytes and preadipocytes

Yu Wen; HongWei Wang; Robin MacLaren; Jing Wu; HuiLing Lu; Katherine Cianflone

Acylation stimulating protein (ASP) stimulates triglyceride synthesis and glucose transport via its receptor C5L2. The aims were (i) to evaluate ASP response under insulin‐resistant conditions and (ii) to identify mechanisms of ASP resistance using 3T3‐L1 adipocytes and preadipocytes. Overnight incubation with palmitate (PAL) or oleate (OLE) induced dose‐dependent inhibition of ASP‐stimulated glucose transport in adipocytes (198 ± 18% +ASP, 100 ± 4% basal, 131 ± 14% + ASP + 1 mmol/L PAL) and preadipocytes (287 ± 21% + ASP, 100 ± 4% basal, 109 ± 13% + ASP + 1 mmol/L PAL). In adipocytes, dose‐dependent maximal C5L2 mRNA decreases were −41 ± 15% and −82 ± 2%, with decreased cell‐surface C5L2 of −55 ± 12% and −39 ± 9% (1 mmol/L PAL and OLE, respectively) with no change in preadipocytes. Adipocytes treated with PAL or OLE evidenced inhibition of ASP stimulation of G proteins: Gβ (−50%), Gαq/11 (−50%) and protein kinase C: PKCα‐P (−52%), PKCζ‐P (−43%). Fatty acid‐induced ASP resistance via C5L2 may contribute to altered adipose tissue function and obesity/insulin resistance phenotype in humans. J. Cell. Biochem. 104: 391–401, 2008.


Molecular and Cellular Biology | 2007

Elevated Expression of DecR1 Impairs ErbB2/Neu-Induced Mammary Tumor Development

Josie Ursini-Siegel; Ashish Rajput; HuiLing Lu; Virginie Sanguin-Gendreau; Dongmei Zuo; Vasilios Papavasiliou; Cynthia Lavoie; Jason Turpin; Katherine Cianflone; David Huntsman; William J. Muller

ABSTRACT Tumor cells utilize glucose as a primary energy source and require ongoing lipid biosynthesis for growth. Expression of DecR1, an auxiliary enzyme in the fatty acid β-oxidation pathway, is significantly diminished in numerous spontaneous mammary tumor models and in primary human breast cancer. Moreover, ectopic expression of DecR1 in ErbB2/Neu-induced mammary tumor cells is sufficient to reduce levels of ErbB2/Neu expression and impair mammary tumor outgrowth. This correlates with a decreased proliferative index and reduced rates of de novo fatty acid synthesis in DecR1-expressing breast cancer cells. Although DecR1 expression does not affect glucose uptake in ErbB2/Neu-transformed cells, sustained expression of DecR1 protects mammary tumor cells from apoptotic cell death following glucose withdrawal. Moreover, expression of catalytically impaired DecR1 mutants in Neu-transformed breast cancer cells restored Neu expression levels and increased mammary tumorigenesis in vivo. These results argue that DecR1 is sufficient to limit breast cancer cell proliferation through its ability to limit the extent of oncogene expression and reduce steady-state levels of de novo fatty acid synthesis. Furthermore, DecR1-mediated suppression of tumorigenesis can be uncoupled from its effects on Neu expression. Thus, while downregulation of Neu expression may contribute to DecR1-mediated tumor suppression in certain cell types, this is not an obligate event in all Neu-transformed breast cancer cells.


Molecular Immunology | 2012

A new effector of lipid metabolism: Complement factor properdin

Danny Gauvreau; Christian Roy; Fun-Qun Tom; HuiLing Lu; Pierre Miegueu; Denis Richard; Wen-Chao Song; Cordula M. Stover; Katherine Cianflone

BACKGROUND The complement system is well known for its role in innate immunity via the classical, the alternative and the lectin pathways, although recent investigations suggest expanding roles in adipose tissue. Properdin stabilizes C3 convertase following alternative complement activation. Properdin is also present in adipose tissue, localized to adipocyte membranes. AIM We evaluated the potential role of properdin in energy metabolism using properdin deficient (PKO) mice and cell based assays. RESULTS PKO mice have a diet-dependent increase in weight gain compared to wild-type (WT) littermates on a high fat diet (P<0.05), directly related to 51% increase in relative fat mass (PKO: 35.8±2.2% body fat vs. WT: 23.6±2.2%, P<0.01). PKO mice have decreased energy expenditure (P<0.01), and altered postprandial lipid clearance (P<0.01). However glucose metabolism was unchanged after a glucose tolerance test vs. WT mice. In murine 3T3-L1 adipocytes, addition of properdin had no effect on C3 or ASP production but almost completely inhibited the insulin-mediated stimulation of fatty acid uptake and incorporation into TG. Properdin had no effect on basal or insulin-stimulated glucose transport in either 3T3-L1 adipocytes or L6 rat skeletal muscle cells. CONCLUSION Thus properdin may be added to the growing list of complement proteins (C3, adipsin, factor B, ASP (C3adesArg), factor H, C1q and C3aR) which influence lipid metabolism, energy storage and insulin resistance, and further support the hypothesis of a dual role of complement in adipose tissue.


European Journal of Cell Biology | 2013

Differential chemoattractant response in adipocytes and macrophages to the action of acylation stimulating protein.

Fun-Qun Tom; Danny Gauvreau; Marc Lapointe; HuiLing Lu; Pegah Poursharifi; Xiao-Ping Luo; Katherine Cianflone

Obesity is characterized by chronic low-grade inflammation with increased adipose tissue pro-inflammatory cytokine production. Acylation stimulating protein (ASP) stimulates triglyceride synthesis and glucose transport via its receptor C5L2. Circulating ASP is increased in obesity, insulin resistance and metabolic syndrome. The present study examines the effects of normal (50 nM), high physiological (200 nM) and pathological (600 nM) levels of ASP on inflammatory changes in 3T3-L1 adipocytes and J774 macrophages and the underlying mechanisms involved. Treatment with ASP for 24h increased monocyte chemoattractant protein-1 (MCP1, 800%, P<0.001) and keratinocyte-derived chemokine (KC, >150%, P<0.01) secretion in adipocytes in a dose-dependent manner, with no effect on IL-6 or adiponectin. In macrophages, ASP had no effect on these cytokines. C5a, a ligand for C5L2 and C5aR receptors, differed from ASP. Macrophage-adipocyte coculture increased MCP-1 and adiponectin secretion, and ASP further enhanced secretion (P<0.001 and P<0.05, respectively) at doses of 50 nM and 200 nM. ASP increased Ser(468) and Ser(536) phosphorylation of p65 NFκB in a time- and concentration-dependent manner (P<0.05) as well as phosphorylation of Akt Ser(473) (p=0.02). ASP and insulin stimulations of Ser(536) p65 NFκB phosphorylation were comparable (both p<0.05) but not additive. Both inhibition of PI3kinase (with wortmannin) and NFκB (with BAY11-7085) prevented ASP stimulation of MCP-1 and KC secretion in adipocytes. These findings suggest that ASP, especially at high physiologic doses, may stimulate specific inflammatory cytokines in adipocytes through PI3kinase- and NFκB-dependant pathways, thus further promoting macrophage infiltration and local inflammation in obese adipose tissue.


Molecular and Cellular Endocrinology | 2014

C5aR and C5L2 act in concert to balance immunometabolism in adipose tissue

Pegah Poursharifi; Marc Lapointe; Alexandre Fisette; HuiLing Lu; Christian Roy; Mercedes N. Munkonda; David P. Fairlie; Katherine Cianflone

Recent studies suggested that the immunometabolic receptors; C5aR and C5L2, constitutively self-associate into homo-/heterodimers and that acylation stimulating protein (ASP/C3adesArg) or C5a treatment of adipocytes increased their colocalization. The present study evaluates the C5aR contribution in adipocytes to the metabolic and immune responses elicited by ligand stimulation. The effects of C5a, ASP, and insulin on cytokine production, triglyceride synthesis (TGS), and key signaling pathways were evaluated in isolated primary adipocytes and cultured 3T3-L1 differentiated adipocytes. In addition, mRNA expression of IRS1 and PGC1α was compared in adipose tissue samples from WT vs. C5aRKO mice. Both C5a and ASP directly increased MCP-1 (238±4%; P<0.001, and 377±2% vs. basal 100%; P<0.001, respectively) and KC (413±11%; P<0.001, and 529±16%; P<0.001 vs. basal 100%, respectively) secretion, TGS (131±1%; P<0.001, and 152±6%; P<0.001, vs. basal 100% respectively), and Akt/NFκB phosphorylation pathways in adipocytes. However, in C5aRKO adipocytes, C5a effects were disrupted, while stimulatory effects of ASP were mostly maintained. Addition of C5a completely blocked ASP signaling and activity in both C5aRKO and WT adipocytes as well as 3T3-L1 adipocytes. Furthermore, C5aRKO adipocytes revealed impaired insulin stimulation of cytokine production, with partial impairment of signaling and TGS stimulation, consistent with decreased IRS1 and PGC1α mRNA expression in adipose tissue. These observations indicate the importance of C5aR in adipose tissue metabolism and immunity, which may be regulated through heterodimerization with C5L2.


PLOS ONE | 2013

C5a Receptor Deficiency Alters Energy Utilization and Fat Storage

Christian Roy; Abhishek Gupta; Alexandre Fisette; Marc Lapointe; Pegah Poursharifi; Denis Richard; HuiLing Lu; Bao Lu; Norma P. Gerard; Craig Gerard; Katherine Cianflone

Objective To investigate the impact of whole body C5a receptor (C5aR) deficiency on energy metabolism and fat storage. Design Male wildtype (WT) and C5aR knockout (C5aRKO) mice were fed a low fat (CHOW) or a high fat high sucrose diet-induced obesity (DIO) diet for 14 weeks. Body weight and food intake were measured weekly. Indirect calorimetry, dietary fatload clearance, insulin and glucose tolerance tests were also evaluated. Liver, muscle and adipose tissue mRNA gene expression were measured by RT-PCR. Results At week one and 12, C5aRKO mice on DIO had increased oxygen consumption. After 12 weeks, although food intake was comparable, C5aRKO mice had lower body weight (−7% CHOW, −12% DIO) as well as smaller gonadal (−38% CHOW, −36% DIO) and inguinal (−29% CHOW, −30% DIO) fat pads than their WT counterparts. Conversely, in WT mice, C5aR was upregulated in DIO vs CHOW diets in gonadal adipose tissue, muscle and liver, while C5L2 mRNA expression was lower in C5aRKO on both diet. Furthermore, blood analysis showed lower plasma triglyceride and non-esterified fatty acid levels in both C5aRKO groups, with faster postprandial triglyceride clearance after a fatload. Additionally, C5aRKO mice showed lower CD36 expression in gonadal and muscle on both diets, while DGAT1 expression was higher in gonadal (CHOW) and liver (CHOW and DIO) and PPARγ was increased in muscle and liver. Conclusion These observations point towards a role (either direct or indirect) for C5aR in energy expenditure and fat storage, suggesting a dual role for C5aR in metabolism as well as in immunity.


Pediatric Research | 2012

Downregulating SOCS3 with siRNA ameliorates insulin signaling and glucose metabolism in hepatocytes of IUGR rats with catch-up growth

Juan Ye; Ruidan Zheng; Qun Wang; Lihong Liao; Yanqin Ying; HuiLing Lu; Katherine Cianflone; Qin Ning; Xiaoping Luo

Background:Individuals with intrauterine growth retardation (IUGR) who demonstrate a catch-up in body weight are prone to insulin resistance. High expressions of suppressor of cytokine signaling 3 (SOCS3) are thought to aggravate insulin resistance. We hypothesized that downregulating SOCS3 expression via small interfering RNA (siRNA) might have beneficial effects on insulin-resistant hepatocytes of catch-up growth IUGR rats (CG-IUGRs).Methods:An IUGR rat model was employed via maternal nutritional restriction. After evaluating metabolic states of CG-IUGR offspring, effective SOCS3-specific siRNA (siSOCS3) was transfected into cultured hepatocytes using liposomes. mRNA levels of SOCS3, insulin receptor substrates (IRSs), phosphatidylinositol 3-kinase (PI3K), and Akt2, key gluconeogenesis genes, were assessed via real-time PCR. Protein expression and phosphorylation changes were evaluated via western blot.Results:CG-IUGR hepatocytes showed increases in SOCS3 and gluconeogenic gene expressions, and decreases in IRS1 and PI3K expressions as compared with controls. After transfecting CG-IUGR hepatocytes with siSOCS3, protein levels of IRS1, PI3K, and phosphorylated Akt2 were higher as compared with those of untransfected CG-IUGR cells. Transcriptional suppression effects of gluconeogenesis genes were more obvious in siSOCS3-treated cells after insulin stimulation.Conclusion:Additional insights were provided to understand mechanisms of insulin resistance in CG-IUGR rats. Downregulating SOCS3 might improve insulin signaling transduction and ameliorate hepatic glucose metabolism in insulin-resistant CG-IUGR rats in vitro.

Collaboration


Dive into the HuiLing Lu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Cui

McGill University Health Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge