Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huiluo Cao is active.

Publication


Featured researches published by Huiluo Cao.


Systematic and Applied Microbiology | 2011

Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment

Huiluo Cao; Meng Li; Yiguo Hong; Ji-Dong Gu

Ammonia oxidation by microorganisms is a critical process in the nitrogen cycle. Recent research results show that ammonia-oxidizing archaea (AOA) are both abundant and diverse in a range of ecosystems. In this study, we examined the abundance and diversity of AOA and ammonia-oxidizing beta-proteobacteria (AOB) in estuarine sediments in Hong Kong for two seasons using the ammonia monooxygenase A subunit gene (amoA) as molecular biomarker. Relationships between diversity and abundance of AOA and AOB and physicochemical parameters were also explored. AOB were more diverse but less abundant than AOA. A few phylogenetically distinct amoA gene clusters were evident for both AOA and AOB from the mangrove sediment. Pearson moment correlation analysis and canonical correspondence analysis (CCA) were used to explore physicochemical parameters potentially important to AOA and AOB. Metal concentrations were proposed to contribute potentially to the distributions of AOA while total phosphorus (TP) was correlated to the distributions of AOB. Quantitative PCR estimates indicated that AOA were more abundant than AOB in all samples, but the ratio of AOA/AOB (from 1.8 to 6.3) was smaller than most other studies by one to two orders. The abundance of AOA or AOB was correlated with pH and temperature while the AOA/AOB ratio was with the concentrations of ammonium. Several physicochemical factors, rather than any single one, affect the distribution patterns suggesting that a combination of factors is involved in shaping the dynamics of AOA and AOB in the mangrove ecosystem.


Microbial Ecology | 2011

Residence of Habitat-Specific Anammox Bacteria in the Deep-Sea Subsurface Sediments of the South China Sea: Analyses of Marker Gene Abundance with Physical Chemical Parameters

Yiguo Hong; Meng Li; Huiluo Cao; Ji-Dong Gu

Anaerobic ammonium oxidation (anammox) has been recognized as an important process for the global nitrogen cycle. In this study, the occurrence and diversity of anammox bacteria in the deep-sea subsurface sediments of the South China Sea (SCS) were investigated. Results indicated that the anammox bacterial sequences recovered from this habitat by amplifying both 16S rRNA gene and hydrazine oxidoreductase encoding hzo gene were all closely related to the Candidatus Scalindua genus. A total of 96 16S rRNA gene sequences from 346 clones were grouped into five subclusters: two subclusters affiliated with the brodae and arabica species, while three new subclusters named zhenghei-I, -II, and -III showed ≤97.4% nucleic acid sequence identity with other known Candidatus Scalindua species. Meanwhile, 88 hzo gene sequences from the sediments also formed five distant subclusters within hzo cluster 1c. Through fluorescent real-time PCR analysis, the abundance of anammox bacteria in deep-sea subsurface sediment was quantified by hzo genes, which ranged from 1.19 × 104 to 7.17 × 104 copies per gram of dry sediments. Combining all the information from this study, diverse Candidatus Scalindua anammox bacteria were found in the deep-sea subsurface sediments of the SCS, and they could be involved in the nitrogen loss from the fixed inventory in the habitat.


Applied Microbiology and Biotechnology | 2012

Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea

Huiluo Cao; Yiguo Hong; Meng Li; Ji-Dong Gu

The phylogenetic diversity and abundance of ammonia-oxidizing beta-proteobacteria (beta-AOB) was analyzed along an anthropogenic pollution gradient from the coastal Pearl River Delta to the South China Sea using the ammonia monooxygenase subunit A (amoA) gene. Along the gradient from coastal to the open ocean, the phylogenetic diversity of the dominant genus changed from Nitrosomonas to Nitrosospira, indicating the niche specificity by these two genera as both salinity and anthropogenic influence were major factors involved. The diversity of bacterial amoA gene was also variable along the gradient, with the highest in the deep-sea sediments, followed by the marshes sediments and the lowest in the coastal areas. Within the Nitrosomonas-related clade, four distinct lineages were identified including a putative new one (A5-16) from the different sites over the large geographical area. In the Nitrosospira-related clade, the habitat-specific lineages to the deep-sea and coastal sediments were identified. This study also provides strong support that Nitrosomonas genus, especially Nitrosomonas oligotropha lineage (6a) could be a potential bio-indicator species for pollution or freshwater/wastewater input into coastal environments. A suite of statistical analyses used showed that water depth and temperature were major factors shaping the community structure of beta-AOB in this study area.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2011

Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River estuary to the South China Sea

Huiluo Cao; Yiguo Hong; Meng Li; Ji-Dong Gu

In the present study the diversity and abundance of nitrifying microbes including ammonia-oxidizing archaea (AOA) and betaproteobacteria (beta-AOB) were investigated, along with the physicochemical parameters potentially affecting them, in a transect of surface sediments from the coastal margin adjacent to the Pearl River estuary to the slope in the deep South China Sea. Nitrifying microbial diversity was determined by detecting the amoA (ammonia monooxygenase subunit A) gene. An obvious community structure shift for both AOA and beta-AOB from the coastal marginal areas to the slope in the deep-sea was detected, while the OTU numbers of AOA amoA were more stable than those of the beta-AOB. The OTUs of beta-AOB increased with the distance from the coastal margin areas to the slope in the deep-sea. Beta-AOB showed lower diversity with dominant strains in a polluted area but higher diversity without dominant strains in a clean area. Moreover, the diversity of beta-AOB was correlated with pH values, while no noticeable relationships were established between AOA and physicochemical parameters. Beta-AOB was more sensitive to transect environmental variability and might be a potential indicator for environmental changes. Additionally, the surface sediments surveyed in the South China Sea harboured diverse and distinct AOA and beta-AOB phylotypes different from other environments, suggesting the endemicity of some nitrifying prokaryotes in the South China Sea.


Microbial Ecology | 2013

Community Structures and Distribution of Anaerobic Ammonium Oxidizing and "nirS"-Encoding Nitrite-Reducing Bacteria in Surface Sediments of the South China Sea

Meng Li; Yiguo Hong; Huiluo Cao; Ji-Dong Gu

Anaerobic ammonium oxidation (anammox) and denitrification are two important processes responsible for nitrogen loss; monitoring of microbial communities carrying out these two processes offers a unique opportunity to understand the microbial nitrogen cycle. The aim of the current study was to characterize community structures and distribution of anammox and nirS-encoding nitrite-reducing bacteria in surface sediments of the northern South China Sea (SCS). The consistent phylogenetic results of three biomarkers of anammox bacteria, including 16S rRNA, hzo, and Scalindua-nirS genes, showed that Scalindua-like bacteria were the only anammox group presenting in surface sediments of the SCS. However, a relatively high micro-diversity was found within this group, including several SCS habitat-specific phylotypes, Candidatus “Scalindua zhenghei”. Comparing to 16S rRNA gene, hzo and Scalindua-nirS genes provided a relatively higher resolution to elucidate anammox bacteria. For the nirS-encoding nitrite-reducing bacteria, the detected nirS gene sequences were closely related to various marine nirS denitrifiers, especially those which originated from coastal and estuarine sediments with a much higher diversity than anammox bacteria. Anammox bacterial communities shifted along with the seawater depth, while nirS-encoding nitrite-reducing bacteria did not. Although nirS-encoding nitrite-reducing bacteria have a much higher abundance and diversity than anammox bacteria, they showed similar abundance variation patterns in research sites, suggesting the two microbial groups might be affected by the similar environmental factors. The significant correlations among the abundance of the two microbial groups with the molar ratio of NH4+ to (NO2− + NO3−), pH, and organic matters of sediments strongly supported this hypothesis.


Methods in Enzymology | 2011

Responses of Aerobic and Anaerobic Ammonia/Ammonium-Oxidizing Microorganisms to Anthropogenic Pollution in Coastal Marine Environments

Huiluo Cao; Meng Li; Hongyue Dang; Ji-Dong Gu

Up to date, numerous studies have shown that the community structure of aerobic ammonia oxidizers including ammonia-oxidizing Betaproteobacteria (Beta-AOB) and ammonia-oxidizing archaea (AOA) and, more recently, the anaerobic ammonium-oxidizing (anammox) bacteria is responsive to environmental conditions including salinity, pH, selected metal ions, concentrations of inorganic nitrogen, total phosphorus, the ratio of organic carbon and nitrogen, and sedimentological factors such as the sediment median grain size. Identification of these responses to known anthropogenic pollution is of particular interest to better understand the growth dynamics and activities of nitrogen transforming microorganisms in marine environments. This chapter discusses currently available methods including molecular ecological analysis using clone library constructions with specific molecular genetic markers for delineating community changes of Beta-AOB, AOA, and anammox bacteria. Using data on ammonia-oxidizing microbial community structures from Jiaozhou Bay in North China and three marine environments with anthropogenic pollution gradients in South China from coastal Mai Po Nature Reserve of Hong Kong to the South China Sea as examples, statistical analyses packages (DOTUR, UniFrac, and Canoco) are presented as useful tools to illustrate the relationship between changes in nitrogen metabolizing microbial communities and established environmental variables.


Geomicrobiology Journal | 2012

Lower Abundance of Ammonia-Oxidizing Archaea Than Ammonia-Oxidizing Bacteria Detected in the Subsurface Sediments of the Northern South China Sea

Huiluo Cao; Yiguo Hong; Meng Li; Ji-Dong Gu

Diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in samples of the northern South China Sea subsurface sediment were assessed by analyzing the amoA gene sequences retrieved from the samples. The microbial diversity was assessed using rarefaction and phylogenetic analyses. The deep-sea subsurface sediments harbored diverse and distinct AOA and AOB communities, but the abundance of AOA was lower than that of AOB, consistent with many other studies about bacteria and archaea in subsurface sediments. Diversity of AOA shown in the OTUs and Shannon index was correlated with the concentration of nitrite in the Pearson analysis, but no obvious relationships between the diversity or abundance of AOB and the physicochemical parameters could be identified in the present study, indicating the concentration of ammonium may not be an important factor to determine the diversity and abundance of ammonia-oxidizing prokaryotes in the subsurface sediments. Additionally, Nitrosomonas-like AOB was found to be dominant in subsurface sediments of the northern South China Sea showing a different adaption strategy comparing with some Nitrosospira-like AOB lineages. Concentration of nitrite was correlated with diversity of AOA, but no correlations between diversity and abundance of AOB and the physicochemical parameters were established in the study. Supplementary materials are available for this article. Go to the publishers online edition of Geomicrobiology Journal to view the free supplemental files.


Microbial Ecology | 2011

Phylogenetic Diversity and Ecological Pattern of Ammonia-oxidizing Archaea in the Surface Sediments of the Western Pacific

Huiluo Cao; Yiguo Hong; Meng Li; Ji-Dong Gu

The phylogenetic diversity of ammonia-oxidizing archaea (AOA) was surveyed in the surface sediments from the northern part of the South China Sea (SCS). The distribution pattern of AOA in the western Pacific was discussed through comparing the SCS with other areas in the western Pacific including Changjiang Estuary and the adjacent East China Sea where high input of anthropogenic nitrogen was evident, the tropical West Pacific Continental Margins close to the Philippines, the deep-sea methane seep sediments in the Okhotsk Sea, the cold deep sea of Northeastern Japan Sea, and the hydrothermal field in the Southern Okinawa Trough. These various environments provide a wide spectrum of physical and chemical conditions for a better understanding of the distribution pattern and diversities of AOA in the western Pacific. Under these different conditions, the distinct community composition between shallow and deep-sea sediments was clearly delineated based on the UniFrac PCoA and Jackknife Environmental Cluster analyses. Phylogenetic analyses showed that a few ammonia-oxidizing archaeal subclades in the marine water column/sediment clade and endemic lineages were indicative phylotypes for some environments. Higher phylogenetic diversity was observed in the Philippines while lower diversity in the hydrothermal vent habitat. Water depth and possibly with other environmental factors could be the main driving forces to shape the phylogenetic diversity of AOA observed, not only in the SCS but also in the whole western Pacific. The multivariate regression tree analysis also supported this observation consistently. Moreover, the functions of current and other climate factors were also discussed in comparison of phylogenetic diversity. The information collectively provides important insights into the ecophysiological requirements of uncultured ammonia-oxidizing archaeal lineages in the western Pacific Ocean.


Applied Microbiology and Biotechnology | 2013

Using the variation of anammox bacteria community structures as a bio-indicator for anthropogenic/terrestrial nitrogen inputs in the Pearl River Delta (PRD)

Meng Li; Huiluo Cao; Yiguo Hong; Ji-Dong Gu

The variation of anammox bacteria community composition was evaluated in sediments collected from the Pearl River Delta area with an anthropogenic/terrestrial input gradient. Results indicated that the community composition of anammox bacteria shifted from estuarine environment to the South China Sea deep ocean along with the anthropogenic/terrestrial input gradient, where Scalindua genus of anammox bacteria predominated in the area with less anthropogenic/terrestrial influences, such as in the open oceanic area, while genera of Kuenenia/Brocadia anammox bacteria have higher proportions in the area with higher anthropogenic/terrestrial impacts. The canonical correspondence analysis demonstrated that salinity, organic matter contents, and ratio of NH4+ to (NO2−+NO3−) strongly affected the shifting of anammox bacterial community compositions within the same gradients. The results obtained in this study, together with the similar variation of anammox bacteria community structures in other several estuaries in the world, indicated that anammox bacteria might have a habitat-specific distribution pattern according to their living habits, and their community composition could be served as a bio-indicator to monitor the anthropogenic/terrestrial N inputs in coastal environments.


Geobiology | 2013

Diversity, abundance, and distribution of NO‐forming nitrite reductase–encoding genes in deep‐sea subsurface sediments of the South China Sea

Meng Li; Yiguo Hong; Huiluo Cao; Martin G. Klotz; Ji-Dong Gu

In marine ecosystems, both nitrite-reducing bacteria and anaerobic ammonium-oxidizing (anammox) bacteria, containing different types of NO-forming nitrite reductase-encoding genes, contribute to the nitrogen cycle. The objectives of study were to reveal the diversity, abundance, and distribution of NO-forming nitrite reductase-encoding genes in deep-sea subsurface environments. Results showed that higher diversity and abundance of nirS gene than nirK and Scalindua-nirS genes were evident in the sediments of the South China Sea (SCS), indicating bacteria containing nirS gene dominated the NO-forming nitrite-reducing microbial community in this ecosystem. Similar diversity and abundance distribution patterns of both nirS and Scalindua-nirS genes were detected in this study sites, but different from nirK gene. Further statistical analyses also showed both nirS and Scalindua-nirS genes respond similarly to environmental factors, but differed from nirK gene. These results suggest that bacteria containing nirS and Scalindua-nirS genes share similar niche in deep-sea subsurface sediments of the SCS, but differed from those containing nirK gene, indicating that community structures of nitrite-reducing bacteria are segregated by the functional modules (NirS vs. NirK) rather than the competing processes (anammox vs. classical denitrification).

Collaboration


Dive into the Huiluo Cao's collaboration.

Top Co-Authors

Avatar

Ji-Dong Gu

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Meng Li

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Yiguo Hong

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hongyue Dang

China University of Petroleum

View shared research outputs
Top Co-Authors

Avatar

Martin G. Klotz

University of North Carolina at Charlotte

View shared research outputs
Researchain Logo
Decentralizing Knowledge