Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martin G. Klotz is active.

Publication


Featured researches published by Martin G. Klotz.


Microbiology | 2002

Redundancy, phylogeny and differential expression of Histoplasma capsulatum catalases.

Clayton H. Johnson; Martin G. Klotz; J.Lyndal York; Volker Kruft; Joan E. McEwen

Histoplasma capsulatum produces an extracellular catalase termed M antigen, which is similar to catalase B of Aspergillus and Emericella species. Evidence is presented here for two additional catalase isozymes in H. capsulatum. Catalase A is highly similar to a large-subunit catalase in Aspergillus and Emericella species, while catalase P is a small-subunit catalase protein with greatest similarity to known peroxisomal catalases of animals and Saccharomycotina yeasts. Complete cDNAs for the CATA and CATP genes (encoding catalases A and P, respectively) were isolated. The transcriptional expression of the H. capsulatum CATA, CATB (M antigen) and CATP genes was assessed by Northern blot hybridizations on total RNA. Results at the transcript levels for these genes are shown for three conditions: cell morphology (mycelial versus yeast phase cells), oxidative stress (in response to a challenge with H(2)O(2)) and carbon source (glucose vs glycerol). Collectively, these results demonstrated regulation of CATA by both cell morphology and oxidative stress, but not by carbon source, and regulation of CATB and CATP by carbon source but not cell morphology or oxidative stress. A phylogenetic analysis of presently available catalase sequences and intron residences was done. The results support a model for evolution of eukaryotic monofunctional catalase genes from prokaryotic genes.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea

Christopher B. Walker; J.R. de la Torre; Martin G. Klotz; Hidetoshi Urakawa; Nicolás Pinel; Daniel J. Arp; Céline Brochier-Armanet; Patrick Chain; Patricia P. Chan; A. Gollabgir; James Hemp; Michael Hügler; E.A. Karr; Martin Könneke; Maria V. Shin; Thomas J. Lawton; Todd M. Lowe; Willm Martens-Habbena; Luis A. Sayavedra-Soto; D. Lang; Stefan M. Sievert; Amy C. Rosenzweig; Gerard Manning; David A. Stahl

Ammonia-oxidizing archaea are ubiquitous in marine and terrestrial environments and now thought to be significant contributors to carbon and nitrogen cycling. The isolation of Candidatus “Nitrosopumilus maritimus” strain SCM1 provided the opportunity for linking its chemolithotrophic physiology with a genomic inventory of the globally distributed archaea. Here we report the 1,645,259-bp closed genome of strain SCM1, revealing highly copper-dependent systems for ammonia oxidation and electron transport that are distinctly different from known ammonia-oxidizing bacteria. Consistent with in situ isotopic studies of marine archaea, the genome sequence indicates N. maritimus grows autotrophically using a variant of the 3-hydroxypropionate/4-hydroxybutryrate pathway for carbon assimilation, while maintaining limited capacity for assimilation of organic carbon. This unique instance of archaeal biosynthesis of the osmoprotectant ectoine and an unprecedented enrichment of multicopper oxidases, thioredoxin-like proteins, and transcriptional regulators points to an organism responsive to environmental cues and adapted to handling reactive copper and nitrogen species that likely derive from its distinctive biochemistry. The conservation of N. maritimus gene content and organization within marine metagenomes indicates that the unique physiology of these specialized oligophiles may play a significant role in the biogeochemical cycles of carbon and nitrogen.


Journal of Bacteriology | 2003

Complete Genome Sequence of the Ammonia-Oxidizing Bacterium and Obligate Chemolithoautotroph Nitrosomonas europaea

Patrick Chain; Jane E. Lamerdin; Frank W. Larimer; Warren Regala; Victoria Lao; Miriam Land; Loren Hauser; Alan B. Hooper; Martin G. Klotz; Jeanette M. Norton; Luis A. Sayavedra-Soto; Dave M. Arciero; Norman G. Hommes; Mark Whittaker; Daniel J. Arp

Nitrosomonas europaea (ATCC 19718) is a gram-negative obligate chemolithoautotroph that can derive all its energy and reductant for growth from the oxidation of ammonia to nitrite. Nitrosomonas europaea participates in the biogeochemical N cycle in the process of nitrification. Its genome consists of a single circular chromosome of 2,812,094 bp. The GC skew analysis indicates that the genome is divided into two unequal replichores. Genes are distributed evenly around the genome, with approximately 47% transcribed from one strand and approximately 53% transcribed from the complementary strand. A total of 2,460 protein-encoding genes emerged from the modeling effort, averaging 1,011 bp in length, with intergenic regions averaging 117 bp. Genes necessary for the catabolism of ammonia, energy and reductant generation, biosynthesis, and CO(2) and NH(3) assimilation were identified. In contrast, genes for catabolism of organic compounds are limited. Genes encoding transporters for inorganic ions were plentiful, whereas genes encoding transporters for organic molecules were scant. Complex repetitive elements constitute ca. 5% of the genome. Among these are 85 predicted insertion sequence elements in eight different families. The strategy of N. europaea to accumulate Fe from the environment involves several classes of Fe receptors with more than 20 genes devoted to these receptors. However, genes for the synthesis of only one siderophore, citrate, were identified in the genome. This genome has provided new insights into the growth and metabolism of ammonia-oxidizing bacteria.


Archives of Microbiology | 2002

Diversity of ammonia monooxygenase operon in autotrophic ammonia-oxidizing bacteria

Jeanette M. Norton; J. J. Alzerreca; Yuichi Suwa; Martin G. Klotz

Abstract.Autotrophic ammonia-oxidizing bacteria use the essential enzyme ammonia monooxygenase (AMO) to transform ammonia to hydroxylamine. The amo operon consists of at least three genes, amoC, amoA, and amoB; amoA encodes the subunit containing the putative enzyme active site. The use of the amo genes as functional markers for ammonia-oxidizing bacteria in environmental applications requires knowledge of the diversity of the amo operon on several levels: (1) the copy number of the operon in the genome, (2) the arrangement of the three genes in an individual operon, and (3) the primary sequence of the individual genes. We present a database of amo gene sequences for pure cultures of ammonia-oxidizing bacteria representing both the β- and the γ-subdivision of Proteobacteria in the following genera: Nitrosospira (6 strains), Nitrosomonas (5 strains) and Nitrosococcus (2 strains). The amo operon was found in multiple (2–3) nearly identical copies in the β-subdivision representatives but in single copies in the γ-subdivision ammonia oxidizers. The analysis of the deduced amino acid sequence revealed strong conservation for all three Amo peptides in both primary and secondary structures. For the amoA gene within the β-subdivision, nucleotide identity values are approximately 85% within the Nitrosomonas or the Nitrosospira groups, but approximately 75% when comparing between these groups. Conserved regions in amoA and amoC were identified and used as primer sites for PCR amplification of amo genes from pure cultures, enrichments and the soil environment. The intergenic region between amoC and amoA is variable in length and may be used to profile the community of ammonia-oxidizing bacteria in environmental samples. Electronic supplementary material to this paper can be obtained by using the Springer LINK server located at http://dx.doi.org/10.1007/s00203-001-0369-z.


Applied and Environmental Microbiology | 2008

Genome of the Epsilonproteobacterial Chemolithoautotroph Sulfurimonas denitrificans

S.M. Sievert; Kathleen M. Scott; Martin G. Klotz; Patrick Chain; Loren Hauser; James Hemp; Michael Hügler; Miriam Land; Alla Lapidus; Frank W. Larimer; Susan Lucas; Stephanie Malfatti; Folker Meyer; Ian T. Paulsen; Qinghu Ren; Jörg Simon

ABSTRACT Sulfur-oxidizing epsilonproteobacteria are common in a variety of sulfidogenic environments. These autotrophic and mixotrophic sulfur-oxidizing bacteria are believed to contribute substantially to the oxidative portion of the global sulfur cycle. In order to better understand the ecology and roles of sulfur-oxidizing epsilonproteobacteria, in particular those of the widespread genus Sulfurimonas, in biogeochemical cycles, the genome of Sulfurimonas denitrificans DSM1251 was sequenced. This genome has many features, including a larger size (2.2 Mbp), that suggest a greater degree of metabolic versatility or responsiveness to the environment than seen for most of the other sequenced epsilonproteobacteria. A branched electron transport chain is apparent, with genes encoding complexes for the oxidation of hydrogen, reduced sulfur compounds, and formate and the reduction of nitrate and oxygen. Genes are present for a complete, autotrophic reductive citric acid cycle. Many genes are present that could facilitate growth in the spatially and temporally heterogeneous sediment habitat from where Sulfurimonas denitrificans was originally isolated. Many resistance-nodulation-development family transporter genes (10 total) are present; of these, several are predicted to encode heavy metal efflux transporters. An elaborate arsenal of sensory and regulatory protein-encoding genes is in place, as are genes necessary to prevent and respond to oxidative stress.


Applied and Environmental Microbiology | 2008

Complete Genome Sequence of Nitrosospira multiformis, an Ammonia-Oxidizing Bacterium from the Soil Environment

Jeanette M. Norton; Martin G. Klotz; Lisa Y. Stein; Daniel J. Arp; Peter J. Bottomley; Patrick Chain; Loren Hauser; Miriam Land; Frank W. Larimer; Maria W. Shin; Shawn R. Starkenburg

ABSTRACT The complete genome of the ammonia-oxidizing bacterium Nitrosospira multiformis (ATCC 25196T) consists of a circular chromosome and three small plasmids totaling 3,234,309 bp and encoding 2,827 putative proteins. Of the 2,827 putative proteins, 2,026 proteins have predicted functions and 801 are without conserved functional domains, yet 747 of these have similarity to other predicted proteins in databases. Gene homologs from Nitrosomonas europaea and Nitrosomonas eutropha were the best match for 42% of the predicted genes in N. multiformis. The N. multiformis genome contains three nearly identical copies of amo and hao gene clusters as large repeats. The features of N. multiformis that distinguish it from N. europaea include the presence of gene clusters encoding urease and hydrogenase, a ribulose-bisphosphate carboxylase/oxygenase-encoding operon of distinctive structure and phylogeny, and a relatively small complement of genes related to Fe acquisition. Systems for synthesis of a pyoverdine-like siderophore and for acyl-homoserine lactone were unique to N. multiformis among the sequenced genomes of ammonia-oxidizing bacteria. Gene clusters encoding proteins associated with outer membrane and cell envelope functions, including transporters, porins, exopolysaccharide synthesis, capsule formation, and protein sorting/export, were abundant. Numerous sensory transduction and response regulator gene systems directed toward sensing of the extracellular environment are described. Gene clusters for glycogen, polyphosphate, and cyanophycin storage and utilization were identified, providing mechanisms for meeting energy requirements under substrate-limited conditions. The genome of N. multiformis encodes the core pathways for chemolithoautotrophy along with adaptations for surface growth and survival in soil environments.


Applied and Environmental Microbiology | 2006

Genome sequence of the chemolithoautotrophic nitrite-oxidizing bacterium Nitrobacter winogradskyi Nb-255

Shawn R. Starkenburg; Patrick Chain; Luis A. Sayavedra-Soto; Loren Hauser; Miriam Land; Frank W. Larimer; Stephanie Malfatti; Martin G. Klotz; Peter J. Bottomley; Daniel J. Arp; William J. Hickey

ABSTRACT The alphaproteobacterium Nitrobacter winogradskyi (ATCC 25391) is a gram-negative facultative chemolithoautotroph capable of extracting energy from the oxidation of nitrite to nitrate. Sequencing and analysis of its genome revealed a single circular chromosome of 3,402,093 bp encoding 3,143 predicted proteins. There were extensive similarities to genes in two alphaproteobacteria, Bradyrhizobium japonicum USDA110 (1,300 genes) and Rhodopseudomonas palustris CGA009 CG (815 genes). Genes encoding pathways for known modes of chemolithotrophic and chemoorganotrophic growth were identified. Genes encoding multiple enzymes involved in anapleurotic reactions centered on C2 to C4 metabolism, including a glyoxylate bypass, were annotated. The inability of N. winogradskyi to grow on C6 molecules is consistent with the genome sequence, which lacks genes for complete Embden-Meyerhof and Entner-Doudoroff pathways, and active uptake of sugars. Two gene copies of the nitrite oxidoreductase, type I ribulose-1,5-bisphosphate carboxylase/oxygenase, cytochrome c oxidase, and gene homologs encoding an aerobic-type carbon monoxide dehydrogenase were present. Similarity of nitrite oxidoreductases to respiratory nitrate reductases was confirmed. Approximately 10% of the N. winogradskyi genome codes for genes involved in transport and secretion, including the presence of transporters for various organic-nitrogen molecules. The N. winogradskyi genome provides new insight into the phylogenetic identity and physiological capabilities of nitrite-oxidizing bacteria. The genome will serve as a model to study the cellular and molecular processes that control nitrite oxidation and its interaction with other nitrogen-cycling processes.


Biochemical Society Transactions | 2011

Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems

Kartik Chandran; Lisa Y. Stein; Martin G. Klotz; Mark C.M. van Loosdrecht

Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO₂⁻) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N₂O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O₂) is associated with N₂O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N₂O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N₂O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N₂O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N₂O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.


Applied and Environmental Microbiology | 2006

Complete Genome Sequence of the Marine, Chemolithoautotrophic, Ammonia-Oxidizing Bacterium Nitrosococcus oceani ATCC 19707

Martin G. Klotz; Daniel J. Arp; Patrick S. G. Chain; Amal F. El-Sheikh; Loren Hauser; Norman G. Hommes; Frank W. Larimer; Stephanie Malfatti; Jeanette M. Norton; Amisha T. Poret-Peterson; Lisa M. Vergez; Bess B. Ward

ABSTRACT The gammaproteobacterium Nitrosococcus oceani (ATCC 19707) is a gram-negative obligate chemolithoautotroph capable of extracting energy and reducing power from the oxidation of ammonia to nitrite. Sequencing and annotation of the genome revealed a single circular chromosome (3,481,691 bp; G+C content of 50.4%) and a plasmid (40,420 bp) that contain 3,052 and 41 candidate protein-encoding genes, respectively. The genes encoding proteins necessary for the function of known modes of lithotrophy and autotrophy were identified. Contrary to betaproteobacterial nitrifier genomes, the N. oceani genome contained two complete rrn operons. In contrast, only one copy of the genes needed to synthesize functional ammonia monooxygenase and hydroxylamine oxidoreductase, as well as the proteins that relay the extracted electrons to a terminal electron acceptor, were identified. The N. oceani genome contained genes for 13 complete two-component systems. The genome also contained all the genes needed to reconstruct complete central pathways, the tricarboxylic acid cycle, and the Embden-Meyerhof-Parnass and pentose phosphate pathways. The N. oceani genome contains the genes required to store and utilize energy from glycogen inclusion bodies and sucrose. Polyphosphate and pyrophosphate appear to be integrated in this bacteriums energy metabolism, stress tolerance, and ability to assimilate carbon via gluconeogenesis. One set of genes for type I ribulose-1,5-bisphosphate carboxylase/oxygenase was identified, while genes necessary for methanotrophy and for carboxysome formation were not identified. The N. oceani genome contains two copies each of the genes or operons necessary to assemble functional complexes I and IV as well as ATP synthase (one H+-dependent F0F1 type, one Na+-dependent V type).


PLOS Biology | 2006

The genome of deep-sea vent chemolithoautotroph Thiomicrospira crunogena XCL-2.

Kathleen M. Scott; Stefan M. Sievert; Fereniki N. Abril; Lois A. Ball; Chantell J. Barrett; Rodrigo A. Blake; Amanda J. Boller; Patrick Chain; Justine Clark; Carisa R. Davis; Chris Detter; Kimberly F. Do; Kimberly P. Dobrinski; Brandon I. Faza; Kelly A. Fitzpatrick; Sharyn K. Freyermuth; Tara L. Harmer; Loren Hauser; Michael Hügler; Cheryl A. Kerfeld; Martin G. Klotz; William Kong; Miriam Land; Alla Lapidus; Frank W. Larimer; Dana L. Longo; Susan Lucas; Stephanie Malfatti; Steven E. Massey; Darlene D. Martin

Presented here is the complete genome sequence of Thiomicrospira crunogena XCL-2, representative of ubiquitous chemolithoautotrophic sulfur-oxidizing bacteria isolated from deep-sea hydrothermal vents. This gammaproteobacterium has a single chromosome (2,427,734 base pairs), and its genome illustrates many of the adaptations that have enabled it to thrive at vents globally. It has 14 methyl-accepting chemotaxis protein genes, including four that may assist in positioning it in the redoxcline. A relative abundance of coding sequences (CDSs) encoding regulatory proteins likely control the expression of genes encoding carboxysomes, multiple dissolved inorganic nitrogen and phosphate transporters, as well as a phosphonate operon, which provide this species with a variety of options for acquiring these substrates from the environment. Thiom. crunogena XCL-2 is unusual among obligate sulfur-oxidizing bacteria in relying on the Sox system for the oxidation of reduced sulfur compounds. The genome has characteristics consistent with an obligately chemolithoautotrophic lifestyle, including few transporters predicted to have organic allocrits, and Calvin-Benson-Bassham cycle CDSs scattered throughout the genome.

Collaboration


Dive into the Martin G. Klotz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mike S. M. Jetten

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loren Hauser

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miriam Land

Oak Ridge National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Patrick Chain

Los Alamos National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Tanja Woyke

Joint Genome Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge