Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huimei Lu is active.

Publication


Featured researches published by Huimei Lu.


Molecular and Cellular Biology | 2005

The BRCA2-interacting protein BCCIP functions in RAD51 and BRCA2 focus formation and homologous recombinational repair.

Huimei Lu; Xu Guo; Xiangbing Meng; Jingmei Liu; Chris Allen; Justin Wray; Jac A. Nickoloff; Zhiyuan Shen

ABSTRACT Homologous recombinational repair (HRR) of DNA damage is critical for maintaining genome stability and tumor suppression. RAD51 and BRCA2 colocalization in nuclear foci is a hallmark of HRR. BRCA2 has important roles in RAD51 focus formation and HRR of DNA double-strand breaks (DSBs). We previously reported that BCCIPα interacts with BRCA2. We show that a second isoform, BCCIPβ, also interacts with BRCA2 and that this interaction occurs in a region shared by BCCIPα and BCCIPβ. We further show that chromatin-bound BRCA2 colocalizes with BCCIP nuclear foci and that most radiation-induced RAD51 foci colocalize with BCCIP. Reducing BCCIPα by 90% or BCCIPβ by 50% by RNA interference markedly reduces RAD51 and BRCA2 foci and reduces HRR of DSBs by 20- to 100-fold. Similarly, reducing BRCA2 by 50% reduces RAD51 and BCCIP foci. These data indicate that BCCIP is critical for BRCA2- and RAD51-dependent responses to DNA damage and HRR.


Cancer Research | 2009

The Cytoskeleton Protein Filamin-A Is Required for an Efficient Recombinational DNA Double Strand Break Repair

Jingyin Yue; Qin Wang; Huimei Lu; Mark Brenneman; Feiyue Fan; Zhiyuan Shen

The human actin-binding protein filamin-A (also known as ABP-280) cross-links actin into a dynamic three-dimensional structure. It interacts with >45 proteins of diverse functions, serving as the scaffold in various signaling networks. BRCA2 is a protein that regulates RAD51-dependent recombinational repair of DNA double strand breaks (DSB). Proximate to the COOH terminus of the BRCA2 protein, a conserved and DNA binding domain (BRCA2-DBD) interacts with filamin-A and BCCIP. In this study, we sought to test the hypothesis that filamin-A influences homologous recombinational repair of DSB and the maintenance of genomic stability. We used three pairs of cell lines with normal and reduced filamin-A expression, including breast cancer and melanoma cells. We found that lack or reduction of filamin-A sensitizes cells to ionizing radiation, slows the removal of DNA damage-induced gammaH2AX nuclear foci, reduces RAD51 nuclear focus formation and recruitment to chromatin in response to irradiation, and results in a 2-fold reduction of homologous recombinational repair of DSB. Furthermore, filamin-A-deficient cells have increased frequencies of micronucleus formation after irradiation. Our data illustrate the importance of the cytoskeleton structure in supporting the homologous recombinational DNA repair machinery and genome integrity, and further implicate a potential of filamin-A as a marker for prognosis in DNA damage-based cancer therapy.


Nucleic Acids Research | 2007

BCCIP regulates homologous recombination by distinct domains and suppresses spontaneous DNA damage

Huimei Lu; Jingyin Yue; Xiangbing Meng; Jac A. Nickoloff; Zhiyuan Shen

Homologous recombination (HR) is critical for maintaining genome stability through precise repair of DNA double-strand breaks (DSBs) and restarting stalled or collapsed DNA replication forks. HR is regulated by many proteins through distinct mechanisms. Some proteins have direct enzymatic roles in HR reactions, while others act as accessory factors that regulate HR enzymatic activity or coordinate HR with other cellular processes such as the cell cycle. The breast cancer susceptibility gene BRCA2 encodes a critical accessory protein that interacts with the RAD51 recombinase and this interaction fluctuates during the cell cycle. We previously showed that a BRCA2- and p21-interacting protein, BCCIP, regulates BRCA2 and RAD51 nuclear focus formation, DSB-induced HR and cell cycle progression. However, it has not been clear whether BCCIP acts exclusively through BRCA2 to regulate HR and whether BCCIP also regulates the alternative DSB repair pathway, non-homologous end joining. In this study, we found that BCCIP fragments that interact with BRCA2 or with p21 each inhibit DSB repair by HR. We further show that transient down-regulation of BCCIP in human cells does not affect non-specific integration of transfected DNA, but significantly inhibits homology-directed gene targeting. Furthermore, human HT1080 cells with constitutive down-regulation of BCCIP display increased levels of spontaneous single-stranded DNA (ssDNA) and DSBs. These data indicate that multiple BCCIP domains are important for HR regulation, that BCCIP is unlikely to regulate non-homologous end joining, and that BCCIP plays a critical role in resolving spontaneous DNA damage.


Cell Cycle | 2004

BCCIP functions through p53 to regulate the expression of p21Waf1/Cip1.

Xiangbing Meng; Huimei Lu; Zhiyuan Shen

The BCCIP protein is a BRCA2 and CDKN1A (p21Waf1/Cip1) Interacting Protein, which binds to ahighly conserved domain of BRCA2, and a C-terminal domain of the CDK-inhibitor p21. We havepreviously reported that overexpression of BCCIP increases p21 mRNA and protein levels, andinhibits G1 to S progression. In this report, we show that a partial shutdown of BCCIP expressionby RNA interference reduces p21 levels and impairs G1/S checkpoint activation in response toionizing radiation in HT1080 cells. We further show that the regulation of p21 expression byBCCIP is dependent on p53, and BCCIP regulates p53 transcription activity. These data provide anew mechanism by which BCCIP regulates p21 functions.


PLOS ONE | 2013

Identification of the DNA Repair Defects in a Case of Dubowitz Syndrome

Jingyin Yue; Huimei Lu; Shijie Lan; Jingmei Liu; Mark N. Stein; Bruce G. Haffty; Zhiyuan Shen

Dubowitz Syndrome is an autosomal recessive disorder with a unique set of clinical features including microcephaly and susceptibility to tumor formation. Although more than 140 cases of Dubowitz syndrome have been reported since 1965, the genetic defects of this disease has not been identified. In this study, we systematically analyzed the DNA damage response and repair capability of fibroblasts established from a Dubowitz Syndrome patient. Dubowitz syndrome fibroblasts are hypersensitive to ionizing radiation, bleomycin, and doxorubicin. However, they have relatively normal sensitivities to mitomycin-C, cisplatin, and camptothecin. Dubowitz syndrome fibroblasts also have normal DNA damage signaling and cell cycle checkpoint activations after DNA damage. These data implicate a defect in repair of DNA double strand break (DSB) likely due to defective non-homologous end joining (NHEJ). We further sequenced several genes involved in NHEJ, and identified a pair of novel compound mutations in the DNA Ligase IV gene. Furthermore, expression of wild type DNA ligase IV completely complement the DNA repair defects in Dubowitz syndrome fibroblasts, suggesting that the DNA ligase IV mutation is solely responsible for the DNA repair defects. These data suggests that at least subset of Dubowitz syndrome can be attributed to DNA ligase IV mutations.


PLOS ONE | 2010

Involvement of Caveolin-1 in Repair of DNA Damage through Both Homologous Recombination and Non-Homologous End Joining

H. Zhu; Jingyin Yue; Zui Pan; Hao Wu; Yan Cheng; Huimei Lu; Xingcong Ren; Ming Yao; Zhiyuan Shen; Jin-Ming Yang

Background Caveolin-1 (Cav-1), the major component of caveolae, is a 21–24 kDa integral membrane protein that interacts with a number of signaling molecules. By acting as a scaffolding protein, Cav-1 plays crucial roles in the regulation of various physiologic and patho-physiologic processes including oncogenic transformation and tumorigenesis, and tumor invasion and metastasis. Methodology/Principal Findings In the present study we sought to explore the role of Cav-1 in response to DNA damage and the mechanism involved. We found that the level of Cav-1 was up-regulated rapidly in cells treated with ionizing radiation. The up-regulation of Cav-1 following DNA damage occurred only in cells expressing endogenous Cav-1, and was associated with the activation of DNA damage response pathways. Furthermore, we demonstrated that the expression of Cav-1 protected cells against DNA damage through modulating the activities of both the homologous recombination (HR) and non-homologous end joining (NHEJ) repair systems, as evidenced by the inhibitory effects of the Cav-1-targeted siRNA on cell survival, HR frequency, phosphorylation of DNA-dependent protein kinase (DNA-PK), and nuclear translocation of epidermal growth factor receptor (EGFR) following DNA damage, and by the stimulatory effect of the forced expression of Cav-1 on NHEJ frequency. Conclusion/Significance Our results indicate that Cav-1 may play a critical role in sensing genotoxic stress and in orchestrating the response of cells to DNA damage through regulating the important molecules involved in maintaining genomic integrity.


International Journal of Biological Sciences | 2013

Inhibition of Filamin-A Reduces Cancer Metastatic Potential

Xi Jiang; Jingyin Yue; Huimei Lu; Neil Campbell; Qifeng Yang; Shijie Lan; Bruce G. Haffty; Changji Yuan; Zhiyuan Shen

Filamin-A cross-links actin filaments into dynamic orthogonal networks, and interacts with an array of proteins of diverse cellular functions. Because several filamin-A interaction partners are implicated in signaling of cell mobility regulation, we tested the hypothesis that filamin-A plays a role in cancer metastasis. Using four pairs of filamin-A proficient and deficient isogenic cell lines, we found that filamin-A deficiency in cancer cells significantly reduces their migration and invasion. Using a xenograft tumor model with subcutaneous and intracardiac injections of tumor cells, we found that the filamin-A deficiency causes significant reduction of lung, splenic and systemic metastasis in nude mice. We evaluated the expression of filamin-A in breast cancer tissues by immunohistochemical staining, and found that low levels of filamin-A expression in cancer cells of the tumor tissues are associated with a better distant metastasis-free survival than those with normal levels of filamin-A. These data not only validate filamin-A as a prognostic marker for cancer metastasis, but also suggest that inhibition of filamin-A in cancer cells may reduce metastasis and that filamin-A can be used as a therapeutic target for filamin-A positive cancer.


DNA Repair | 2012

Filamin-A as a marker and target for DNA damage based cancer therapy

Jingyin Yue; Huimei Lu; Jingmei Liu; Marianne Berwick; Zhiyuan Shen

Filamin-A, also called actin binding protein 280 (ABP-280), cross-links the actin filaments into dynamic orthogonal network to serve as scaffolds in multiple signaling pathways. It has been reported that filamin-A interacts with DNA damage response proteins BRCA1 and BRCA2. Defects of filamin-A impair the repair of DNA double strand breaks (DSBs), resulting in sensitization of cells to ionizing radiation. In this study, we sought to test the hypothesis that filamin-A can be used as a target for cancer chemotherapy and as a biomarker to predict cancer response to therapeutic DNA damage. We found that reduction of filamin-A sensitizes cancer cells to chemotherapy reagents bleomycin and cisplatin, delays the repair of not only DSBs but also single strand breaks (SSBs) and interstrand crosslinks (ICLs), and increases chromosome breaks after the drug treatment. By treating a panel of human melanoma cell lines with variable filamin-A expression, we observed a correlation between expression level of filamin-A protein and drug IC(50). We further inhibited the expression of filamin-A in melanoma cells, and found that this confers an increased sensitivity to bleomycin and cisplatin treatment in a mouse xenograft tumor model. These results suggest that filamin-A plays a role in repair of a variety of DNA damage, that lack of filamin-A is a prognostic marker for a better outcome after DNA damage based treatment, and filamin-A can be inhibited to sensitize filamin-A positive cancer cells to therapeutic DNA damage. Thus filamin-A can be used as a biomarker and a target for DNA damage based cancer therapy.


BMC Cancer | 2009

Alterations of BCCIP, a BRCA2 interacting protein, in astrocytomas

Jingmei Liu; Huimei Lu; Hiroko Ohgaki; Adrian Merlo; Zhiyuan Shen

BackgroundLoss of heterozygosity of chromosome 10q26 has been shown to be associated with the aggressiveness of astrocytic tumors (or astrocytomas), but the responsible gene(s) residing in this region has not been fully identified. The BCCIP gene is located at chromosome 10q26. It encodes a BRCA2 and CDKN1A (p21) interacting protein. Previous studies have shown that down-regulation of BCCIP impairs recombinational DNA repair, G1/S cell cycle checkpoint, p53 trans-activation activity, cytokinesis, and chromosome stability, suggesting a potential role of BCCIP in cancer etiology. In this study, we investigated whether BCCIP is altered in astrocytomas.MethodsGenomic DNA from 45 cases of grade IV astrocytic tumor (glioblastoma) tissues and 12 cases of normal tissues were analyzed by quantitative PCR. The BCCIP protein expression in 96 cases of grade II–IV astrocytic tumors was detected by immunohistochemistry (IHC). IHC staining of glial fibrillary acid protein (GFAP), a marker for astrocytic cells, was used to identify cells of the astrocytic lineage.ResultsWe found that BCCIP protein is expressed in normal cells with positive staining of GFAP. However, BCCIP protein expression was not detectable in ~45% of all astrocytic tumors, and in > 60% in the grade IV glioblastoma. About 45% glioblastoma have significant (p < 0.01) reduction of BCCIP gene copy number when compared to normal DNA. Furthermore, the frequency of lacking BCCIP expression is associated with the aggressiveness of astrocytic tumors.ConclusionOur data implicate a role of BCCIP in astrocytic tumorigenesis, and lack of BCCIP may be used as a marker for astrocytomas.


PLOS Genetics | 2011

Essential Roles of BCCIP in Mouse Embryonic Development and Structural Stability of Chromosomes

Huimei Lu; Yi-Yuan Huang; Sonam Mehrotra; Roberto Droz-Rosario; Jingmei Liu; Mantu Bhaumik; Eileen White; Zhiyuan Shen

BCCIP is a BRCA2- and CDKN1A(p21)-interacting protein that has been implicated in the maintenance of genomic integrity. To understand the in vivo functions of BCCIP, we generated a conditional BCCIP knockdown transgenic mouse model using Cre-LoxP mediated RNA interference. The BCCIP knockdown embryos displayed impaired cellular proliferation and apoptosis at day E7.5. Consistent with these results, the in vitro proliferation of blastocysts and mouse embryonic fibroblasts (MEFs) of BCCIP knockdown mice were impaired considerably. The BCCIP deficient mouse embryos die before E11.5 day. Deletion of the p53 gene could not rescue the embryonic lethality due to BCCIP deficiency, but partially rescues the growth delay of mouse embryonic fibroblasts in vitro. To further understand the cause of development and proliferation defects in BCCIP-deficient mice, MEFs were subjected to chromosome stability analysis. The BCCIP-deficient MEFs displayed significant spontaneous chromosome structural alterations associated with replication stress, including a 3.5-fold induction of chromatid breaks. Remarkably, the BCCIP-deficient MEFs had a ∼20-fold increase in sister chromatid union (SCU), yet the induction of sister chromatid exchanges (SCE) was modestly at 1.5 fold. SCU is a unique type of chromatid aberration that may give rise to chromatin bridges between daughter nuclei in anaphase. In addition, the BCCIP-deficient MEFs have reduced repair of irradiation-induced DNA damage and reductions of Rad51 protein and nuclear foci. Our data suggest a unique function of BCCIP, not only in repair of DNA damage, but also in resolving stalled replication forks and prevention of replication stress. In addition, BCCIP deficiency causes excessive spontaneous chromatin bridges via the formation of SCU, which can subsequently impair chromosome segregations in mitosis and cell division.

Collaboration


Dive into the Huimei Lu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge