Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huimeng Wang is active.

Publication


Featured researches published by Huimeng Wang.


Mucosal Immunology | 2017

Mucosal-associated invariant T-cell activation and accumulation after in vivo infection depends on microbial riboflavin synthesis and co-stimulatory signals

Zhenjun Chen; Huimeng Wang; Criselle D'Souza; S. Sun; Lyudmila Kostenko; Sidonia B. G. Eckle; Bronwyn Meehan; David C. Jackson; Richard A. Strugnell; Hanwei Cao; Nancy Wang; David P. Fairlie; Ligong Liu; Dale I. Godfrey; Jamie Rossjohn; James McCluskey; Alexandra J. Corbett

Despite recent breakthroughs in identifying mucosal-associated invariant T (MAIT) cell antigens (Ags), the precise requirements for in vivo MAIT cell responses to infection remain unclear. Using major histocompatibility complex–related protein 1 (MR1) tetramers, the MAIT cell response was investigated in a model of bacterial lung infection employing riboflavin gene-competent and -deficient bacteria. MAIT cells were rapidly enriched in the lungs of C57BL/6 mice infected with Salmonella Typhimurium, comprising up to 50% of αβ-T cells after 1 week. MAIT cell accumulation was MR1-dependent, required Ag derived from the microbial riboflavin synthesis pathway, and did not occur in response to synthetic Ag, unless accompanied by a Toll-like receptor agonist or by co-infection with riboflavin pathway-deficient S. Typhimurium. The MAIT cell response was associated with their long-term accumulation in the lungs, draining lymph nodes and spleen. Lung MAIT cells from infected mice displayed an activated/memory phenotype, and most expressed the transcription factor retinoic acid–related orphan receptor γt. T-bet expression increased following infection. The majority produced interleukin-17 while smaller subsets produced interferon-γ or tumor necrosis factor, detected directly ex vivo. Thus the activation and expansion of MAIT cells coupled with their pro-inflammatory cytokine production occurred in response to Ags derived from microbial riboflavin synthesis and was augmented by co-stimulatory signals.


Nature Immunology | 2017

Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells.

Andrew Keller; Sidonia B. G. Eckle; Weijun Xu; Ligong Liu; Victoria A Hughes; Jeffrey Y. W. Mak; Bronwyn Meehan; Troi Pediongco; Richard W. Birkinshaw; Zhenjun Chen; Huimeng Wang; Criselle D'Souza; Lars Kjer-Nielsen; Nicholas A. Gherardin; Dale I. Godfrey; Lyudmila Kostenko; Alexandra J. Corbett; Anthony W. Purcell; David P. Fairlie; James McCluskey; Jamie Rossjohn

The major-histocompatibility-complex-(MHC)-class-I-related molecule MR1 can present activating and non-activating vitamin-B-based ligands to mucosal-associated invariant T cells (MAIT cells). Whether MR1 binds other ligands is unknown. Here we identified a range of small organic molecules, drugs, drug metabolites and drug-like molecules, including salicylates and diclofenac, as MR1-binding ligands. Some of these ligands inhibited MAIT cells ex vivo and in vivo, while others, including diclofenac metabolites, were agonists. Crystal structures of a T cell antigen receptor (TCR) from a MAIT cell in complex with MR1 bound to the non-stimulatory and stimulatory compounds showed distinct ligand orientations and contacts within MR1, which highlighted the versatility of the MR1 binding pocket. The findings demonstrated that MR1 was able to capture chemically diverse structures, spanning mono- and bicyclic compounds, that either inhibited or activated MAIT cells. This indicated that drugs and drug-like molecules can modulate MAIT cell function in mammals.


Nature Communications | 2017

Stabilizing short-lived Schiff base derivatives of 5-aminouracils that activate mucosal-associated invariant T cells

Jeffrey Y. W. Mak; Weijun Xu; Robert C. Reid; Alexandra J. Corbett; Bronwyn Meehan; Huimeng Wang; Zhenjun Chen; Jamie Rossjohn; James McCluskey; Ligong Liu; David P. Fairlie

Mucosal-associated invariant T (MAIT) cells are activated by unstable antigens formed by reactions of 5-amino-6-D-ribitylaminouracil (a vitamin B2 biosynthetic intermediate) with glycolysis metabolites such as methylglyoxal. Here we show superior preparations of antigens in dimethylsulfoxide, avoiding their rapid decomposition in water (t1/2 1.5 h, 37 °C). Antigen solution structures, MAIT cell activation potencies (EC50 3–500 pM), and chemical stabilities are described. Computer analyses of antigen structures reveal stereochemical and energetic influences on MAIT cell activation, enabling design of a water stable synthetic antigen (EC50 2 nM). Like native antigens, this antigen preparation induces MR1 refolding and upregulates surface expression of human MR1, forms MR1 tetramers that detect MAIT cells in human PBMCs, and stimulates cytokine expression (IFNγ, TNF) by human MAIT cells. These antigens also induce MAIT cell accumulation in mouse lungs after administration with a co-stimulant. These chemical and immunological findings provide new insights into antigen properties and MAIT cell activation.


Journal of Immunology | 2018

Mucosal-Associated Invariant T Cells Augment Immunopathology and Gastritis in Chronic Helicobacter pylori Infection

Criselle D'Souza; Troi Pediongco; Huimeng Wang; Jean-Pierre Y. Scheerlinck; Lyudmila Kostenko; Robyn Esterbauer; Andrew Stent; Sidonia B. G. Eckle; Bronwyn Meehan; Richard A. Strugnell; Hanwei Cao; Ligong Liu; Jeffrey Y. W. Mak; George O. Lovrecz; Louis Lu; David P. Fairlie; Jamie Rossjohn; James McCluskey; Alison L. Every; Zhenjun Chen; Alexandra J. Corbett

Mucosal-associated invariant T (MAIT) cells produce inflammatory cytokines and cytotoxic granzymes in response to by-products of microbial riboflavin synthesis. Although MAIT cells are protective against some pathogens, we reasoned that they might contribute to pathology in chronic bacterial infection. We observed MAIT cells in proximity to Helicobacter pylori bacteria in human gastric tissue, and so, using MR1-tetramers, we examined whether MAIT cells contribute to chronic gastritis in a mouse H. pylori SS1 infection model. Following infection, MAIT cells accumulated to high numbers in the gastric mucosa of wild-type C57BL/6 mice, and this was even more pronounced in MAIT TCR transgenic mice or in C57BL/6 mice where MAIT cells were preprimed by Ag exposure or prior infection. Gastric MAIT cells possessed an effector memory Tc1/Tc17 phenotype, and were associated with accelerated gastritis characterized by augmented recruitment of neutrophils, macrophages, dendritic cells, eosinophils, and non-MAIT T cells and by marked gastric atrophy. Similarly treated MR1−/− mice, which lack MAIT cells, showed significantly less gastric pathology. Thus, we demonstrate the pathogenic potential of MAIT cells in Helicobacter-associated immunopathology, with implications for other chronic bacterial infections.


bioRxiv | 2018

MAIT cells contribute to protection against lethal influenza infection in vivo

Bonnie van Wilgenburg; Liyen Loh; Zhenjun Chen; Troi Pediongco; Huimeng Wang; Mai Shi; Zhe Zhao; Marios Koutsakos; Simone Nüssing; Sneha Sant; Zhongfang Wang; Criselle D'Souza; Catarina F Almeida; Lyudmila Kostenko; Sidonia B. G. Eckle; Bronwyn Meehan; Dale I. Godfrey; Patrick C. Reading; Alexandra J. Corbett; James McCluskey; Paul Klenerman; Katherine Kedzierska; Timothy S. C. Hinks

Mucosal associated invariant T (MAIT) cells are evolutionarily-conserved, innate-like lymphocytes which are abundant in human lungs and can contribute to protection against pulmonary bacterial infection. MAIT cells are also activated during human viral infections, yet it remains unknown whether MAIT cells play a significant protective or even detrimental role during viral infections in vivo. Using murine experimental challenge with two strains of influenza A virus, we show that MAIT cells accumulated and were activated early in infection, with upregulation of CD25, CD69 and Granzyme B, peaking at 5 days post infection. Activation was modulated via cytokines independently of MR1. MAIT cell-deficient MR1−/− mice showed enhanced weight loss and mortality to severe (H1N1) influenza. This was ameliorated by prior adoptive transfer of pulmonary MAIT cells in both immunocompetent and immunodeficient RAG2−/−γC−/− mice. Thus, MAIT cells contribute to protection during respiratory viral infections, and constitute a potential target for therapeutic manipulation.


Nature Communications | 2018

MAIT cells protect against pulmonary Legionella longbeachae infection

Huimeng Wang; Criselle D’Souza; Xin Yi Lim; Lyudmila Kostenko; Troi Pediongco; Sidonia B. G. Eckle; Bronwyn Meehan; Mai Shi; Nancy Wang; Shihan Li; Ligong Liu; Jeffrey Y. W. Mak; David P. Fairlie; Yoichiro Iwakura; Jennifer M. Gunnersen; Andrew Stent; Dale I. Godfrey; Jamie Rossjohn; Glen P. Westall; Lars Kjer-Nielsen; Richard A. Strugnell; James McCluskey; Alexandra J. Corbett; Timothy S. C. Hinks; Zhenjun Chen

Mucosal associated invariant T (MAIT) cells recognise conserved microbial metabolites from riboflavin synthesis. Striking evolutionary conservation and pulmonary abundance implicate them in antibacterial host defence, yet their functions in protection against clinically important pathogens are unknown. Here we show that mouse Legionellalongbeachae infection induces MR1-dependent MAIT cell activation and rapid pulmonary accumulation of MAIT cells associated with immune protection detectable in immunocompetent host animals. MAIT cell protection is more evident in mice lacking CD4+ cells, and adoptive transfer of MAIT cells rescues immunodeficient Rag2−/−γC−/− mice from lethal Legionella infection. Protection is dependent on MR1, IFN-γ and GM-CSF, but not IL-17A, TNF or perforin, and enhanced protection is detected earlier after infection of mice antigen-primed to boost MAIT cell numbers before infection. Our findings define a function for MAIT cells in protection against a major human pathogen and indicate a potential role for vaccination to enhance MAIT cell immunity.Mucosal associated invariant T (MAIT) cells have been implicated in antibacterial responses. Here the authors show MAIT cells confer IFN-γ-mediated protection from lethal infection in a mouse model of Legionella infection, which can be enhanced by synthetic MR1 ligands.


bioRxiv | 2017

Legionella protection and vaccination mediated by Mucosal Associated Invariant T (MAIT) cells

Huimeng Wang; Criselle D'Souza; Xin Yi Lim; Lyudmila Kostenko; Troi Pediongco; Sidonia B. G. Eckle; Bronwyn Meehan; Nancy Wang; Shihan Li; Jeffrey Y. W. Mak; David P. Fairlie; Yoichiro Iwakura; Jennifer M. Gunnersen; Andrew Stent; Jamie Rossjohn; Glen P. Westall; Lars Kjer-Nielsen; Richard A. Strugnell; James McCluskey; Alexandra J. Corbett; Timothy S. C. Hinks; Zhenjun Chen

Mucosal associated invariant T (MAIT) cells recognize conserved microbial metabolites from riboflavin synthesis. Striking evolutionary conservation and pulmonary abundance implicate them in antibacterial host defense, yet their roles in protection against clinically significant pathogens are unknown. Murine Legionella infection induced MR1-dependent MAIT cell activation and rapid pulmonary accumulation of MAIT cells associated with immune protection detectable in fully immunocompetent host animals. MAIT cell protection was more evident in mice lacking CD4+ cells, whilst profoundly immunodeficient RAG2−/−γC−/− mice were substantially rescued from uniformly lethal Legionella infection by adoptively-transferred MAIT cells. This protection was dependent on MR1, IFN-γ and GM-CSF, but not IL-17, TNF-α or perforin. Protection was enhanced and observed earlier post-infection in mice that were Ag-primed to boost MAIT cells before infection. Our findings define a significant role for MAIT cells in protection against a major human pathogen and indicate a potential role for vaccination to enhance MAIT cell immunity.


European Journal of Immunology | 2016

Common drugs modulate mucosal-associated invariant T cell function

Andrew Keller; S. B. G. Eckle; Weijun Xu; Ligong Liu; Victoria A Hughes; Jeffrey Y. W. Mak; Bronwyn Meehan; Troi Pediongco; Richard W. Birkinshaw; Zhenjun Chen; Huimeng Wang; Criselle D’Souza; Lyudmila Kostenko; Alexandra J. Corbett; Anthony W. Purcell; David P. Fairlie; James McCluskey; Jamie Rossjohn

CD4+Foxp3+ regulatory T cells (Tregs) are the main regulators of peripheral tolerance and prevent the development of fatal autoimmune disease in humans and mice. Furthermore, Tregs have also been implicated in suppressing anti-tumour immune responses and are often enriched at sites of primary and metastatic tumours. While studies have shown the effect of Treg ablation on the control of primary tumours, few studies have examined their contribution to metastasis progression. In this thesis I hypothesised that the depletion of Tregs could promote control over metastasis. To address this, a highly metastatic murine mammary carcinoma cell line 4T1 was injected into transgenic mice expressing the diphtheria toxin receptor in Foxp3+ cells. Foxp3+ cells were depleted by administration of diphtheria toxin and the impact of this on growth of primary tumours and metastases was assessed and measured in vitro clonogenic assays. Results of these experiments indicated that Tregdepletion led to control of primary tumour growth and in some mice to control of metastases. Control of metastases was linked to control of primary tumour growth. In order to measure metastasis in vivo, a PET/CT imaging technique was optimized. Primary tumours and large metastatic nodules were successfully imaged in mice using F18 FDG as a radiotracer. However, the studies described herein revealed that micrometastases in mouse lungs were too small to be reliably identified using PET data parameters. CT imaging did however enable detection of increases in tissue density within the lungs, which was suggestive of micrometastases. Data obtained in this way also indicated that Treg-depletion promotes control of metastasis in some mice. Collectively, the findings described in this thesis indicate that Tregdepletion can contribute to control of metastatic disease and should therefore represent an important component of novel immunotherapies.Changes in microbiome, mucosal immunity and intestinal integrity have been associated with the onset of Type 1 Diabetes (T1D) in children. Toll-like Receptors (TLR) have been associated all three factors. The role of TLR and their effects on microbiome in autoimmunity were studied by crossing TLR1,2,4,6,9 and MyD88 targeted deficiency mutations to the type 1 diabetes (T1D)-prone NOD mouse strain. While NOD.Tlr9-/- and NOD.Tlr6-/- mice were unaffected, T1D in NOD.Tlr4-/- and NOD.Tlr1-/- mice was exacerbated and that in NOD.Myd88-/- and NOD.Tlr2-/- mice ameliorated. Physical parameters of the intestines were compared; ileal weight was reduced in NOD.Tlr1-/-mice. Similarly, by histology, these mice had reduced villus length and width. The intestinal microbiomes of NOD wild-type (WT), NOD.Tlr1-/-, NOD.Tlr2-/- and NOD.Tlr4-/- mice were compared by high throughput sequencing of 16S ribosomal DNA (rDNA), in two cohorts, 18 months apart. Analysis of caecal 16S sequences clearly resolved the mouse lines and there were significant differences in beta diversity between the strains, with individual bacterial species contributing greatly to the differences in the microbiota of individual TLR-deficient strains. To test the relationship between microbiome and T1D, all strains were re-derived onto the parental NOD/Lt line and the incidence of T1D re-assessed within two generations. All rederived lines expressed an incidence of disease similar to that of the parental line. TLR deficiencies are associated with changes in microbiome; changes of microbiome are associated with T1D; the effects of TLR deficiencies on T1D appear to be mediated by their effects on gut flora.Intestinal TCRb+CD4-CD8b-CD8a+ (CD8aa) IELs alleviate T cell induced colitis and have been suggested to play a role in virus infection and cancer. Their thymic development has been elucidated to some extent, as IEL precursors (IELp) are known to be CD4-CD8-CD5+TCRb+, but is not yet fully understood. Within the thymus, mature IELp were identified based on their expression of CD122 and MHC class I. Two major phenotypic subsets exist within this mature thymic IELp population: a PD1+Tbet- population that preferentially expresses a4b7, and a PD1-Tbet+ population with preferential CD103 expression. These two populations were also distinct in their Valpha repertoire. The PD1+a4b7+ population contains clones that are strongly self-reactive as judged by Nur77GFP and their dramatic increase in Bim deficient mice, while the PD1-Tbet+ population did not show these characteristics. Both gave rise to CD8aa IELs upon adoptive transfer into RAG-/- recipients. However intrathymic labeling revealed that PD1+a4b7+ IELp were the major thymic emigrating population, and emigration was S1P1-dependent. In contrast, PD1-Tbet+ IELp expressed CXCR3, were retained, and accumulated in the thymus with age. Preliminary immunofluorescence data furthermore indicate differential thymic cortico-medullary localization of the IELp subtypes. These experiments more precisely define the behavior of IEL precursors.


European Journal of Immunology | 2016

Drugs/drug analogues modulate MAIT cell function in an MR1-dependent manner

S. B. G. Eckle; Andrew Keller; Weijun Xu; Bronwyn Meehan; Troi Pediongco; Ligong Liu; Victoria A Hughes; Jeffrey Y. W. Mak; Richard W. Birkinshaw; Zhenjun Chen; Huimeng Wang; Criselle D'Souza; Lyudmila Kostenko; Alexandra J. Corbett; Anthony W. Purcell; David P. Fairlie; Jamie Rossjohn; James McCluskey

CD4+Foxp3+ regulatory T cells (Tregs) are the main regulators of peripheral tolerance and prevent the development of fatal autoimmune disease in humans and mice. Furthermore, Tregs have also been implicated in suppressing anti-tumour immune responses and are often enriched at sites of primary and metastatic tumours. While studies have shown the effect of Treg ablation on the control of primary tumours, few studies have examined their contribution to metastasis progression. In this thesis I hypothesised that the depletion of Tregs could promote control over metastasis. To address this, a highly metastatic murine mammary carcinoma cell line 4T1 was injected into transgenic mice expressing the diphtheria toxin receptor in Foxp3+ cells. Foxp3+ cells were depleted by administration of diphtheria toxin and the impact of this on growth of primary tumours and metastases was assessed and measured in vitro clonogenic assays. Results of these experiments indicated that Tregdepletion led to control of primary tumour growth and in some mice to control of metastases. Control of metastases was linked to control of primary tumour growth. In order to measure metastasis in vivo, a PET/CT imaging technique was optimized. Primary tumours and large metastatic nodules were successfully imaged in mice using F18 FDG as a radiotracer. However, the studies described herein revealed that micrometastases in mouse lungs were too small to be reliably identified using PET data parameters. CT imaging did however enable detection of increases in tissue density within the lungs, which was suggestive of micrometastases. Data obtained in this way also indicated that Treg-depletion promotes control of metastasis in some mice. Collectively, the findings described in this thesis indicate that Tregdepletion can contribute to control of metastatic disease and should therefore represent an important component of novel immunotherapies.Changes in microbiome, mucosal immunity and intestinal integrity have been associated with the onset of Type 1 Diabetes (T1D) in children. Toll-like Receptors (TLR) have been associated all three factors. The role of TLR and their effects on microbiome in autoimmunity were studied by crossing TLR1,2,4,6,9 and MyD88 targeted deficiency mutations to the type 1 diabetes (T1D)-prone NOD mouse strain. While NOD.Tlr9-/- and NOD.Tlr6-/- mice were unaffected, T1D in NOD.Tlr4-/- and NOD.Tlr1-/- mice was exacerbated and that in NOD.Myd88-/- and NOD.Tlr2-/- mice ameliorated. Physical parameters of the intestines were compared; ileal weight was reduced in NOD.Tlr1-/-mice. Similarly, by histology, these mice had reduced villus length and width. The intestinal microbiomes of NOD wild-type (WT), NOD.Tlr1-/-, NOD.Tlr2-/- and NOD.Tlr4-/- mice were compared by high throughput sequencing of 16S ribosomal DNA (rDNA), in two cohorts, 18 months apart. Analysis of caecal 16S sequences clearly resolved the mouse lines and there were significant differences in beta diversity between the strains, with individual bacterial species contributing greatly to the differences in the microbiota of individual TLR-deficient strains. To test the relationship between microbiome and T1D, all strains were re-derived onto the parental NOD/Lt line and the incidence of T1D re-assessed within two generations. All rederived lines expressed an incidence of disease similar to that of the parental line. TLR deficiencies are associated with changes in microbiome; changes of microbiome are associated with T1D; the effects of TLR deficiencies on T1D appear to be mediated by their effects on gut flora.Intestinal TCRb+CD4-CD8b-CD8a+ (CD8aa) IELs alleviate T cell induced colitis and have been suggested to play a role in virus infection and cancer. Their thymic development has been elucidated to some extent, as IEL precursors (IELp) are known to be CD4-CD8-CD5+TCRb+, but is not yet fully understood. Within the thymus, mature IELp were identified based on their expression of CD122 and MHC class I. Two major phenotypic subsets exist within this mature thymic IELp population: a PD1+Tbet- population that preferentially expresses a4b7, and a PD1-Tbet+ population with preferential CD103 expression. These two populations were also distinct in their Valpha repertoire. The PD1+a4b7+ population contains clones that are strongly self-reactive as judged by Nur77GFP and their dramatic increase in Bim deficient mice, while the PD1-Tbet+ population did not show these characteristics. Both gave rise to CD8aa IELs upon adoptive transfer into RAG-/- recipients. However intrathymic labeling revealed that PD1+a4b7+ IELp were the major thymic emigrating population, and emigration was S1P1-dependent. In contrast, PD1-Tbet+ IELp expressed CXCR3, were retained, and accumulated in the thymus with age. Preliminary immunofluorescence data furthermore indicate differential thymic cortico-medullary localization of the IELp subtypes. These experiments more precisely define the behavior of IEL precursors.


European Journal of Immunology | 2016

MAIT cells: Friend or Foe in recognising microbial vitamin metabolites presented by the MHC-I-related molecule MR1

James McCluskey; Alexandra J. Corbett; S. B. G. Eckle; Zhenjun Chen; Huimeng Wang; S. Sun; Criselle D'Souza; Lyudmila Kostenko; Rangsima Reantragoon; Bronwyn Meehan; Richard W. Birkinshaw; Ligong Liu; Onisha Patel; Jim O’Mahony; Hanwei Cao; D. Jackson; Nicholas A. Williamson; Richard A. Strugnell; Jeffrey Y. W. Mak; D. Van Sinderen; David P. Fairlie; Lars Kjer-Nielsen; Godfrey, D., I; Jamie Rossjohn

CD4+Foxp3+ regulatory T cells (Tregs) are the main regulators of peripheral tolerance and prevent the development of fatal autoimmune disease in humans and mice. Furthermore, Tregs have also been implicated in suppressing anti-tumour immune responses and are often enriched at sites of primary and metastatic tumours. While studies have shown the effect of Treg ablation on the control of primary tumours, few studies have examined their contribution to metastasis progression. In this thesis I hypothesised that the depletion of Tregs could promote control over metastasis. To address this, a highly metastatic murine mammary carcinoma cell line 4T1 was injected into transgenic mice expressing the diphtheria toxin receptor in Foxp3+ cells. Foxp3+ cells were depleted by administration of diphtheria toxin and the impact of this on growth of primary tumours and metastases was assessed and measured in vitro clonogenic assays. Results of these experiments indicated that Tregdepletion led to control of primary tumour growth and in some mice to control of metastases. Control of metastases was linked to control of primary tumour growth. In order to measure metastasis in vivo, a PET/CT imaging technique was optimized. Primary tumours and large metastatic nodules were successfully imaged in mice using F18 FDG as a radiotracer. However, the studies described herein revealed that micrometastases in mouse lungs were too small to be reliably identified using PET data parameters. CT imaging did however enable detection of increases in tissue density within the lungs, which was suggestive of micrometastases. Data obtained in this way also indicated that Treg-depletion promotes control of metastasis in some mice. Collectively, the findings described in this thesis indicate that Tregdepletion can contribute to control of metastatic disease and should therefore represent an important component of novel immunotherapies.Changes in microbiome, mucosal immunity and intestinal integrity have been associated with the onset of Type 1 Diabetes (T1D) in children. Toll-like Receptors (TLR) have been associated all three factors. The role of TLR and their effects on microbiome in autoimmunity were studied by crossing TLR1,2,4,6,9 and MyD88 targeted deficiency mutations to the type 1 diabetes (T1D)-prone NOD mouse strain. While NOD.Tlr9-/- and NOD.Tlr6-/- mice were unaffected, T1D in NOD.Tlr4-/- and NOD.Tlr1-/- mice was exacerbated and that in NOD.Myd88-/- and NOD.Tlr2-/- mice ameliorated. Physical parameters of the intestines were compared; ileal weight was reduced in NOD.Tlr1-/-mice. Similarly, by histology, these mice had reduced villus length and width. The intestinal microbiomes of NOD wild-type (WT), NOD.Tlr1-/-, NOD.Tlr2-/- and NOD.Tlr4-/- mice were compared by high throughput sequencing of 16S ribosomal DNA (rDNA), in two cohorts, 18 months apart. Analysis of caecal 16S sequences clearly resolved the mouse lines and there were significant differences in beta diversity between the strains, with individual bacterial species contributing greatly to the differences in the microbiota of individual TLR-deficient strains. To test the relationship between microbiome and T1D, all strains were re-derived onto the parental NOD/Lt line and the incidence of T1D re-assessed within two generations. All rederived lines expressed an incidence of disease similar to that of the parental line. TLR deficiencies are associated with changes in microbiome; changes of microbiome are associated with T1D; the effects of TLR deficiencies on T1D appear to be mediated by their effects on gut flora.Intestinal TCRb+CD4-CD8b-CD8a+ (CD8aa) IELs alleviate T cell induced colitis and have been suggested to play a role in virus infection and cancer. Their thymic development has been elucidated to some extent, as IEL precursors (IELp) are known to be CD4-CD8-CD5+TCRb+, but is not yet fully understood. Within the thymus, mature IELp were identified based on their expression of CD122 and MHC class I. Two major phenotypic subsets exist within this mature thymic IELp population: a PD1+Tbet- population that preferentially expresses a4b7, and a PD1-Tbet+ population with preferential CD103 expression. These two populations were also distinct in their Valpha repertoire. The PD1+a4b7+ population contains clones that are strongly self-reactive as judged by Nur77GFP and their dramatic increase in Bim deficient mice, while the PD1-Tbet+ population did not show these characteristics. Both gave rise to CD8aa IELs upon adoptive transfer into RAG-/- recipients. However intrathymic labeling revealed that PD1+a4b7+ IELp were the major thymic emigrating population, and emigration was S1P1-dependent. In contrast, PD1-Tbet+ IELp expressed CXCR3, were retained, and accumulated in the thymus with age. Preliminary immunofluorescence data furthermore indicate differential thymic cortico-medullary localization of the IELp subtypes. These experiments more precisely define the behavior of IEL precursors.

Collaboration


Dive into the Huimeng Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhenjun Chen

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ligong Liu

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge