Huiqing Huang
Sun Yat-sen University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huiqing Huang.
Genome Research | 2008
Shengfeng Huang; Shaochun Yuan; Lei Guo; Yanhong Yu; Jun Li; Tao Wu; Tong Liu; Manyi Yang; Kui Wu; Huiling Liu; Jin Ge; Yingcai Yu; Huiqing Huang; Meiling Dong; Cuiling Yu; Shangwu Chen; Anlong Xu
It has been speculated that before vertebrates evolved somatic diversity-based adaptive immunity, the germline-encoded diversity of innate immunity may have been more developed. Amphioxus occupies the basal position of the chordate phylum and hence is an important reference to the evolution of vertebrate immunity. Here we report the first comprehensive genomic survey of the immune gene repertoire of the amphioxus Branchiostoma floridae. It has been reported that the purple sea urchin has a vastly expanded innate receptor repertoire not previously seen in other species, which includes 222 toll-like receptors (TLRs), 203 NOD/NALP-like receptors (NLRs), and 218 scavenger receptors (SRs). We discovered that the amphioxus genome contains comparable expansion with 71 TLR gene models, 118 NLR models, and 270 SR models. Amphioxus also expands other receptor-like families, including 1215 C-type lectin models, 240 LRR and IGcam-containing models, 1363 other LRR-containing models, 75 C1q-like models, 98 ficolin-like models, and hundreds of models containing complement-related domains. The expansion is not restricted to receptors but is likely to extend to intermediate signal transducers because there are 58 TIR adapter-like models, 36 TRAF models, 44 initiator caspase models, and 541 death-fold domain-containing models in the genome. Amphioxus also has a sophisticated TNF system and a complicated complement system not previously seen in other invertebrates. Besides the increase of gene number, domain combinations of immune proteins are also increased. Altogether, this survey suggests that the amphioxus, a species without vertebrate-type adaptive immunity, holds extraordinary innate complexity and diversity.
Journal of Immunology | 2007
Yanhong Yu; Yingcai Yu; Huiqing Huang; Kaixia Feng; Minming Pan; Shaochun Yuan; Shengfeng Huang; Tao Wu; Lei Guo; Meiling Dong; Shangwu Chen; Anlong Xu
To investigate the evolution and immune function of C-type lectin in amphioxus, the primitive representative of the chordate phylum, we identified three C-type lectins consisting solely of a carbohydrate recognition domain and N-terminal signal peptide and found that they had distinct express patterns in special tissues and immune response to stimulations analyzed by quantitative real-time PCR. We characterized the biochemical and biological properties of AmphiCTL1, which was dramatically up-regulated in amphioxus challenged with Staphylococcus aureus, Saccharomyces cerevisiae, and zymosan. Immunohistochemistry demonstrated that the localization of AmphiCTL1 protein was exclusively detected in the inner folding tissues of the hepatic diverticulum. Recombinant AmphiCTL1 was characterized as a typical Ca2+-dependent carbohydrate-binding protein possessing hemagglutinating activity, preferentially bound to all examined four Gram-positive bacteria and two yeast strains, but had little binding activity toward four Gram-negative bacteria we tested. It aggregated S. aureus and S. cerevisiae in a Ca2+-dependent manner and specifically bound to insoluble peptidoglycan and glucan, but not to LPS, lipoteichoic acid, and mannan. Calcium increased the intensity of the interaction between AmphiCTL1 and those components, but was not essential. This lectin directly killed S. aureus and S. cerevisiae in a Ca2+-independent fashion, and its binding to microorganism cell wall polysaccharides such as peptidoglycan and glucan preceded microbial killing activity. These findings suggested that AmphiCTL1 acted as a direct microbial killing C-type lectin through binding microbial targets via interaction with peptidoglycan and glucan. Thus, AmphiCTL1 may be an evolutionarily primitive form of antimicrobial protein involved in lectin-mediated innate immunity.
Journal of Immunology | 2011
Shengfeng Huang; Xin Wang; Qingyu Yan; Lei Guo; Shaochun Yuan; Guangrui Huang; Huiqing Huang; Jun Li; Meiling Dong; Shangwu Chen; Anlong Xu
Both amphioxus and the sea urchin encode a complex innate immune gene repertoire in their genomes, but the composition and mechanisms of their innate immune systems, as well as the fundamental differences between two systems, remain largely unexplored. In this study, we dissect the mucosal immune complexity of amphioxus into different evolutionary-functional modes and regulatory patterns by integrating information from phylogenetic inferences, genome-wide digital expression profiles, time course expression dynamics, and functional analyses. With these rich data, we reconstruct several major immune subsystems in amphioxus and analyze their regulation during mucosal infection. These include the TNF/IL-1R network, TLR and NLR networks, complement system, apoptosis network, oxidative pathways, and other effector genes (e.g., peptidoglycan recognition proteins, Gram-negative binding proteins, and chitin-binding proteins). We show that beneath the superficial similarity to that of the sea urchin, the amphioxus innate system, despite preserving critical invertebrate components, is more similar to that of the vertebrates in terms of composition, expression regulation, and functional strategies. For example, major effectors in amphioxus gut mucous tissue are the well-developed complement and oxidative-burst systems, and the signaling network in amphioxus seems to emphasize signal transduction/modulation more than initiation. In conclusion, we suggest that the innate immune systems of amphioxus and the sea urchin are strategically different, possibly representing two successful cases among many expanded immune systems that arose at the age of the Cambrian explosion. We further suggest that the vertebrate innate immune system should be derived from one of these expanded systems, most likely from the same one that was shared by amphioxus.
Journal of Immunology | 2008
Yanhong Yu; Huiqing Huang; Yan Wang; Yingcai Yu; Shaochun Yuan; Shengfeng Huang; Minming Pan; Kaixia Feng; Anlong Xu
C1q is the target recognition protein of the classical complement pathway and a major connecting link between innate and adaptive immunities. Its globular signature domain is also found in a variety of noncomplement protein that can be grouped together as a C1q family. In this study, we have cloned and identified a novel C1q family member in cephalochordate amphioxus and named it as AmphiC1q1. The high transcriptional levels of this gene were detected during all stages of embryonic development, and the section in situ hybridization demonstrated that AmphiC1q1 was mainly expressed in the ovary, intestine, and nerve system of mature individuals. The transcript of AmphiC1q1 was up-regulated by LPS and Gram-negative bacteria, but hardly by lipoteichoic acid and Staphylococcus aureus. The recombinant AmphiC1q1 protein could not bind with N-acetyl-glucosamine and did not possess hemagglutinating activity, indicating that AmphiC1q1 could not act as its lamprey homologue. But both the full-length protein and its truncated globular domain of C1q protein could interact with LPS. Moreover, recombinant AmphiC1q1 protein could inhibit collagen-induced platelet aggregation, but the truncated globular C1q domain protein would not, indicating that the blocking activity of AmphiC1q1 protein was via the collagen region of the protein. Our study on the primitive form of C1q family in protochordate will shed a light on understanding the gradual functional evolution of C1q family and eventual formation of mammalian homologues.
Journal of Biological Chemistry | 2011
Huiqing Huang; Shengfeng Huang; Yingcai Yu; Shaochun Yuan; Rui Li; Xin Wang; Hongchen Zhao; Yanhong Yu; Jun Li; Manyi Yang; Liqun Xu; Shangwu Chen; Anlong Xu
The ficolin-mediated complement pathway plays an important role in vertebrate immunity, but it is not clear whether this pathway exists in invertebrates. Here we identified homologs of ficolin pathway components from the cephalochordate amphioxus and investigated whether they had been co-opted into a functional ficolin pathway. Four of these homologs, ficolin FCN1, serine protease MASP1 and MASP3, and complement component C3, were highly expressed in mucosal tissues and gonads, and were significantly up-regulated following bacterial infection. Recombinant FCN1 could induce hemagglutination, discriminate among sugar components, and specifically recognize and aggregate several bacteria (especially Gram-positive strains) without showing bactericidal activity. This suggested that FCN1 is a dedicated pattern-recognition receptor. Recombinant serine protease MASP1/3 formed complexes with recombinant FCN1 and facilitated the activation of native C3 protein in amphioxus humoral fluid, in which C3 acted as an immune effector. We conclude that amphioxus have developed a functional ficolin-complement pathway. Because ficolin pathway components have not been reported in non-chordate species, our findings supported the idea that this pathway may represent a chordate-specific innovation in the evolution of the complement system.
Cell Research | 2011
Manyi Yang; Shaochun Yuan; Shengfeng Huang; Jun Li; Liqun Xu; Huiqing Huang; Xin Tao; Jian Peng; Anlong Xu
The MyD88-independent pathway, one of the two crucial TLR signaling routes, is thought to be a vertebrate innovation. However, a novel Toll/interleukin-1 receptor (TIR) adaptor, designated bbtTICAM, which was identified in the basal chordate amphioxus, links this pathway to invertebrates. The protein architecture of bbtTICAM is similar to that of vertebrate TICAM1 (TIR-containing adaptor molecule-1, also known as TRIF), while phylogenetic analysis based on the TIR domain indicated that bbtTICAM is the oldest ortholog of vertebrate TICAM1 and TICAM2 (TIR-containing adaptor molecule-2, also known as TRAM). Similar to human TICAM1, bbtTICAM activates NF-κB in a MyD88-independent manner by interacting with receptor interacting protein (RIP) via its RHIM motif. Such activation requires bbtTICAM to form homodimers in endosomes, and it may be negatively regulated by amphioxus SARM (sterile α and armadillo motif-containing protein) and TRAF2. However, bbtTICAM did not induce the production of type I interferon. Thus, our study not only presents the ancestral features of vertebrate TICAM1 and TICAM2, but also reveals the evolutionary origin of the MyD88-independent pathway from basal chordates, which will aid in understanding the development of the vertebrate TLR network.
BMC Biology | 2011
Liqun Xu; Shaochun Yuan; Jun Li; Jie Ruan; Shengfeng Huang; Manyi Yang; Huiqing Huang; Shangwu Chen; Zhenghua Ren; Anlong Xu
BackgroundThe caspase family, which plays a central role in apoptosis in metazoans, has undergone an expansion in amphioxus, increasing to 45 members through domain recombination and shuffling.ResultsIn order to shed light on the conservation and uniqueness of this family in amphioxus, we cloned three representative caspase genes, designated as bbtCaspase-8, bbtCaspase-1/2 and bbtCaspase3-like, from the amphioxus Branchiostoma belcheri tsingtauense. We found that bbtCaspase-8 with conserved protein architecture is involved in the Fas-associated death domain-Caspase-8 mediated pro-apoptotic extrinsic pathway, while bbtCaspase3-like may mediate a nuclear apoptotic pathway in amphioxus. Also, bbtCaspase-1/2 can co-localize with bbtFADD2 in the nucleus, and be recruited to the cytoplasm by amphioxus apoptosis associated speck-like proteins containing a caspase recruitment domain, indicating that bbtCaspase-1/2 may serve as a switch between apoptosis and caspase-dependent innate immune response in invertebrates. Finally, amphioxus extrinsic apoptotic pathway related caspases played important roles in early embryogenesis.ConclusionsOur study not only demonstrates the conservation of bbtCaspase-8 in apoptosis, but also reveals the unique features of several amphioxus caspases with novel domain architectures arose some 500 million years ago.
Glycobiology | 2007
Yanhong Yu; Shaochun Yuan; Yingcai Yu; Huiqing Huang; Kaixia Feng; Minming Pan; Shengfeng Huang; Meiling Dong; Shangwu Chen; Anlong Xu
Archive | 2012
Anlong Xu; Shengfeng Huang; Huiqing Huang; Yingcai Yu; Rui Li; Xin Wang; Shaochun Yuan; Meiling Dong
Archive | 2008
Anlong Xu; Yanhong Yu; Shengfeng Huang; Huiqing Huang; Yingcai Yu; Minming Pan