Huiren Zhao
Wayne State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huiren Zhao.
Cancer and Metastasis Reviews | 2008
Anjum Sohail; Qing Sun; Huiren Zhao; M. Margarida Bernardo; Jin Ah Cho; Rafael Fridman
The process of cancer progression involves the action of multiple proteolytic systems, among which the family of matrix metalloproteinases (MMPs) play a pivotal role. The MMPs evolved to accomplish their proteolytic tasks in multiple cellular and tissue microenvironments including lipid rafts by incorporation and deletions of specific structural domains. The membrane type-MMPs (MT-MMPs) incorporated membrane anchoring domains that display these proteases at the cell surface, and thus they are optimal pericellular proteolytic machines. Two members of the MT-MMP subfamily, MMP-17 (MT4-MMP) and MMP-25 (MT6-MMP), are anchored to the plasma membrane via a glycosyl-phosphatidyl inositol (GPI) anchor, which confers these enzymes a unique set of regulatory and functional mechanisms that separates them from the rest of the MMP family. Discovered almost a decade ago, the body of work on GPI-MT-MMPs today is still surprisingly limited when compared to other MT-MMPs. However, new evidence shows that the GPI-MT-MMPs are highly expressed in human cancer, where they are associated with progression. Accumulating biochemical and functional evidence also highlights their distinct properties. In this review, we summarize the structural, biochemical, and biological properties of GPI-MT-MMPs and present an overview of their expression and role in cancer. We further discuss the potential implications of GPI-anchoring for enzyme function. Finally, we comment on the new scientific challenges that lie ahead to better understand the function and role in cancer of these intriguing but yet unique MMPs.
Journal of Biological Chemistry | 2007
Qing Sun; Christopher R. Weber; Anjum Sohail; M. Margarida Bernardo; Marta Toth; Huiren Zhao; Jerrold R. Turner; Rafael Fridman
MMP25 (MT6-MMP) is one of the two glycosylphosphatidylinositol-anchored matrix metalloproteinases (MMPs) that have been suggested to play a role in pericellular proteolysis. However, its role in cancer is unknown, and its biochemical properties are not well established. Here we found a marked increase in MT6-MMP expression within in situ dysplasia and invasive cancer in 61 samples of human colon cancer. Expression of MT6-MMP in HCT-116 human colon cancer cells promoted tumori-genesis in nude mice. Histologically, the MT6-MMP-expressing tumors demonstrated an infiltrative leading edge in contrast to a rounded leading edge in vector control tumors. Biochemical and biosynthesis analyses revealed that MT6-MMP displayed on the cell surface exists as a major form of 120 kDa that likely represents enzyme homodimers linked by disulfide bonds. Upon reduction, a single 57-kDa active MT6-MMP was detected. Interestingly, neither membrane-anchored nor phosphatidylinositol-specific phospholipase C-released MT6-MMPs were found to be associated with tissue inhibitor of metalloproteinases (TIMPs) and did not activate pro-gelatinases (pro-MMP-2 and pro-MMP-9) even in the presence of exogenous TIMP-2 or TIMP-1. A catalytic domain of MT6-MMP was inhibited preferentially by TIMP-1 (Ki = 0.2 nm) over TIMP-2 (Ki = 2.0 nm), because of a slower association rate. These results show that MT6-MMP may play a role in colon cancer and exhibit unique biochemical and structural properties that may regulate proteolytic function at the cell surface.
Journal of Biological Chemistry | 2008
Jin Ah Cho; Pamela Osenkowski; Huiren Zhao; Seaho Kim; Marta Toth; Kristina Cole; Amro Aboukameel; Allen Saliganan; Lucia Schuger; R. Daniel Bonfil; Rafael Fridman
Membrane type 1 (MT1) matrix metalloproteinase (MMP-14) is a membrane-tethered MMP considered to be a major mediator of pericellular proteolysis. MT1-MMP is regulated by a complex array of mechanisms, including processing and endocytosis that determine the pool of active proteases on the plasma membrane. Autocatalytic processing of active MT1-MMP generates an inactive membrane-tethered 44-kDa product (44-MT1) lacking the catalytic domain. This form preserves all other enzyme domains and is retained at the cell surface. Paradoxically, accumulation of the 44-kDa form has been associated with increased enzymatic activity. Here we report that expression of a recombinant 44-MT1 (Gly285–Val582) in HT1080 fibrosarcoma cells results in enhanced pro-MMP-2 activation, proliferation within a three-dimensional collagen I matrix, and tumor growth and lung metastasis in mice. Stimulation of pro-MMP-2 activation and growth in collagen I was also observed in other cell systems. Expression of 44-MT1 in HT1080 cells is associated with a delay in the rate of active MT1-MMP endocytosis resulting in higher levels of active enzyme at the cell surface. Consistently, deletion of the cytosolic domain obliterates the stimulatory effects of 44-MT1 on MT1-MMP activity. In contrast, deletion of the hinge turns the 44-MT1 form into a negative regulator of enzyme function in vitro and in vivo, suggesting a key role for the hinge region in the functional relationship between active and processed MT1-MMP. Together, these results suggest a novel role for the 44-kDa form of MT1-MMP generated during autocatalytic processing in maintaining the pool of active enzyme at the cell surface.
Journal of Biological Chemistry | 2008
Huiren Zhao; Anjum Sohail; Qing Sun; Qicun Shi; Seaho Kim; Shahriar Mobashery; Rafael Fridman
The membrane type (MT) 6 matrix metalloproteinase (MMP) (MMP25) is a glycosylphosphatidylinositol-anchored matrix metalloproteinase (MMP) that is highly expressed in leukocytes and in some cancer tissues. We previously showed that natural MT6-MMP is expressed on the cell surface as a major reduction-sensitive form of Mr 120, likely representing enzyme homodimers held by disulfide bridges. Among the membrane type-MMPs, the stem region of MT6-MMP contains three cysteine residues at positions 530, 532, and 534 which may contribute to dimerization. A systematic site-directed mutagenesis study of the Cys residues in the stem region shows that Cys532 is involved in MT6-MMP dimerization by forming an intermolecular disulfide bond. The mutagenesis data also suggest that Cys530 and Cys534 form an intramolecular disulfide bond. The experimental observations on cysteines were also investigated by computational studies of the stem peptide, which validate these proposals. Dimerization is not essential for transport of MT6-MMP to the cell surface, partitioning into lipid rafts or cleavage of α-1-proteinase inhibitor. However, monomeric forms of MT6-MMP exhibited enhanced autolysis and metalloprotease-dependent degradation. Collectively, these studies establish the stem region of MT6-MMP as the dimerization interface, an event whose outcome imparts protease stability to the protein.
Journal of Biological Chemistry | 2011
Anjum Sohail; Marta Marco; Huiren Zhao; Qicun Shi; Scott Merriman; Shahriar Mobashery; Rafael Fridman
MT4-MMP (MMP17) belongs to a unique subset of membrane type-matrix metalloproteinases that are anchored to the cell surface via a glycosylphosphatidylinositol moiety. However, little is known about its biochemical properties. Here, we report that MT4-MMP is displayed on the cell surface as a mixed population of monomeric, dimeric, and oligomeric forms. Sucrose gradient fractionation demonstrated that these forms of MT4-MMP are all present in lipid rafts. Mutational and computational analyses revealed that Cys564, which is present within the stem region, mediates MT4-MMP homodimerization by forming a disulfide bond. Substitution of Cys564 results in a more rapid MT4-MMP turnover, when compared with the wild-type enzyme, consistent with a role for dimerization in protein stability. Expression of MT4-MMP in Madin-Darby canine kidney cells enhanced cell migration and invasion of Matrigel, a process that requires catalytic activity. However, a serine substitution at Cys564 did not reduce MT4-MMP-stimulated cell invasion of Matrigel suggesting that homodimerization is not required for this process. Deglycosylation studies showed that MT4-MMP is modified by N-glycosylation. Moreover, inhibition of N-glycosylation by tunicamycin diminished the extent of MT4-MMP dimerization suggesting that N-glycans may confer stability to the dimeric form. Taken together, the data presented here provide a new insight into the characteristics of MT4-MMP and highlight the common and distinct properties of the glycosylphosphatidylinositol-anchored membrane type-matrix metalloproteinases.
Proceedings of the National Academy of Sciences of the United States of America | 2004
Huiren Zhao; Harn Shiue; Sara Palkon; Yingmin Wang; Patrick Cullinan; Janis K. Burkhardt; Mark W. Musch; Eugene B. Chang; Jerrold R. Turner
American Journal of Pathology | 2007
R. Daniel Bonfil; Zhong Dong; J. Carlos Trindade Filho; Aaron Sabbota; Pamela Osenkowski; Sanaa M. Nabha; Hamilto Yamamoto; Sreenivasa R. Chinni; Huiren Zhao; Shahriar Mobashery; Robert L. Vessella; Rafael Fridman; Michael L. Cher
Chemistry & Biology | 2006
Dusan Hesek; Marta Toth; Samy O. Meroueh; Stephen Brown; Huiren Zhao; Wael Sakr; Rafael Fridman; Shahriar Mobashery
Gastroenterology | 2001
Huiren Zhao; Eric D. Black; Monique Arpin; Jerrold R. Turner
Archive | 2008
Huiren Zhao; Anjum Sohail; Qing Sun; Qicun Shi; Seaho Kim; Shahriar Mobashery; Rafael Fridman; Fromthe ‡ DepartmentofPathology