Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Huixian Wu is active.

Publication


Featured researches published by Huixian Wu.


Science | 2011

Structure of an Agonist-Bound Human A2A Adenosine Receptor

Fei Xu; Huixian Wu; Vsevolod Katritch; Gye Won Han; Kenneth A. Jacobson; Zhan-Guo Gao; Vadim Cherezov; Raymond C. Stevens

Changes associated with conformationally selective agonist binding shed light on G protein–coupled receptor activation. Activation of G protein–coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A2A adenosine receptor (A2AAR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A2AAR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A2AAR and its ligand. The results define the molecule UK-432097 as a “conformationally selective agonist” capable of receptor stabilization in a specific active-state configuration.


Nature | 2012

Structure of the human κ-opioid receptor in complex with JDTic

Huixian Wu; Daniel Wacker; Mauro Mileni; Vsevolod Katritch; Gye Won Han; Eyal Vardy; Wei Liu; Aaron A. Thompson; Xi Ping Huang; F. Ivy Carroll; S. Wayne Mascarella; Richard B. Westkaemper; Philip D. Mosier; Bryan L. Roth; Vadim Cherezov; Raymond C. Stevens

Opioid receptors mediate the actions of endogenous and exogenous opioids on many physiological processes, including the regulation of pain, respiratory drive, mood, and—in the case of κ-opioid receptor (κ-OR)—dysphoria and psychotomimesis. Here we report the crystal structure of the human κ-OR in complex with the selective antagonist JDTic, arranged in parallel dimers, at 2.9 Å resolution. The structure reveals important features of the ligand-binding pocket that contribute to the high affinity and subtype selectivity of JDTic for the human κ-OR. Modelling of other important κ-OR-selective ligands, including the morphinan-derived antagonists norbinaltorphimine and 5′-guanidinonaltrindole, and the diterpene agonist salvinorin A analogue RB-64, reveals both common and distinct features for binding these diverse chemotypes. Analysis of site-directed mutagenesis and ligand structure–activity relationships confirms the interactions observed in the crystal structure, thereby providing a molecular explanation for κ-OR subtype selectivity, and essential insights for the design of compounds with new pharmacological properties targeting the human κ-OR.


Nature | 2012

Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic

Aaron A. Thompson; Wei-Wei Liu; Eugene Chun; Vsevolod Katritch; Huixian Wu; Eyal Vardy; Xi-Ping Huang; Claudio Trapella; Remo Guerrini; Girolamo Calo; Bryan L. Roth; Vadim Cherezov; Raymond C. Stevens

Members of the opioid receptor family of G-protein-coupled receptors (GPCRs) are found throughout the peripheral and central nervous system, where they have key roles in nociception and analgesia. Unlike the ‘classical’ opioid receptors, δ, κ and μ (δ-OR, κ-OR and μ-OR), which were delineated by pharmacological criteria in the 1970s and 1980s, the nociceptin/orphanin FQ (N/OFQ) peptide receptor (NOP, also known as ORL-1) was discovered relatively recently by molecular cloning and characterization of an orphan GPCR. Although it shares high sequence similarity with classical opioid GPCR subtypes (∼60%), NOP has a markedly distinct pharmacology, featuring activation by the endogenous peptide N/OFQ, and unique selectivity for exogenous ligands. Here we report the crystal structure of human NOP, solved in complex with the peptide mimetic antagonist compound-24 (C-24) (ref. 4), revealing atomic details of ligand–receptor recognition and selectivity. Compound-24 mimics the first four amino-terminal residues of the NOP-selective peptide antagonist UFP-101, a close derivative of N/OFQ, and provides important clues to the binding of these peptides. The X-ray structure also shows substantial conformational differences in the pocket regions between NOP and the classical opioid receptors κ (ref. 5) and μ (ref. 6), and these are probably due to a small number of residues that vary between these receptors. The NOP–compound-24 structure explains the divergent selectivity profile of NOP and provides a new structural template for the design of NOP ligands.


Nature | 2013

Structure of the human smoothened receptor bound to an antitumour agent.

Chong Wang; Huixian Wu; Vsevolod Katritch; Gye Won Han; Xi Ping Huang; Wei Liu; Fai Yiu Siu; Bryan L. Roth; Vadim Cherezov; Raymond C. Stevens

The smoothened (SMO) receptor, a key signal transducer in the hedgehog signalling pathway, is responsible for the maintenance of normal embryonic development and is implicated in carcinogenesis. It is classified as a class frizzled (class F) G-protein-coupled receptor (GPCR), although the canonical hedgehog signalling pathway involves the GLI transcription factors and the sequence similarity with class A GPCRs is less than 10%. Here we report the crystal structure of the transmembrane domain of the human SMO receptor bound to the small-molecule antagonist LY2940680 at 2.5 Å resolution. Although the SMO receptor shares the seven-transmembrane helical fold, most of the conserved motifs for class A GPCRs are absent, and the structure reveals an unusually complex arrangement of long extracellular loops stabilized by four disulphide bonds. The ligand binds at the extracellular end of the seven-transmembrane-helix bundle and forms extensive contacts with the loops.


Science | 2014

Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator

Huixian Wu; Chong Wang; Karen J. Gregory; Gye Won Han; Hyekyung P. Cho; Yan Xia; Colleen M. Niswender; Vsevolod Katritch; Jens Meiler; Vadim Cherezov; P. Jeffrey Conn; Raymond C. Stevens

Completing the Set G protein–coupled receptors (GPCRs) are membrane proteins that transduce extracellular signals to activate diverse signaling pathways. Significant insight into GPCR function has come from structures of three of four classes of GPCRs—A, B, and Frizzled. Wu et al. (p. 58, published online 6 March) complete the picture by reporting the structure of metabotropic glutamate receptor 1, a class C GPCR. The structure shows differences in the seven-transmembrane (7TM) domain between class C and other classes; however, the overall fold is preserved. Class C GPCRs are known to form dimers through their extracellular domains; however, the structure suggests additional interactions between the 7TM domains mediated by cholesterol. Insight into the activation mechanism of a human neuronal G protein–coupled receptor. The excitatory neurotransmitter glutamate induces modulatory actions via the metabotropic glutamate receptors (mGlus), which are class C G protein–coupled receptors (GPCRs). We determined the structure of the human mGlu1 receptor seven-transmembrane (7TM) domain bound to a negative allosteric modulator, FITM, at a resolution of 2.8 angstroms. The modulator binding site partially overlaps with the orthosteric binding sites of class A GPCRs but is more restricted than most other GPCRs. We observed a parallel 7TM dimer mediated by cholesterols, which suggests that signaling initiated by glutamate’s interaction with the extracellular domain might be mediated via 7TM interactions within the full-length receptor dimer. A combination of crystallography, structure-activity relationships, mutagenesis, and full-length dimer modeling provides insights about the allosteric modulation and activation mechanism of class C GPCRs.


Science | 2013

Structural Basis for Molecular Recognition at Serotonin Receptors

Chong Wang; Yi Jiang; Jinming Ma; Huixian Wu; Daniel Wacker; Vsevolod Katritch; Gye Won Han; Wei Liu; Xi Ping Huang; Eyal Vardy; John D. McCorvy; Xiang Gao; X. Edward Zhou; Karsten Melcher; Chenghai Zhang; Fang Bai; Huaiyu Yang; Linlin Yang; Hualiang Jiang; Bryan L. Roth; Vadim Cherezov; Raymond C. Stevens; H. Eric Xu

Dissecting Serotonin Receptors Serotonin receptors are the targets for many widely used drugs prescribed to treat ailments from depression to obesity and migraine headaches (see the Perspective by Palczewski and Kiser). C. Wang et al. (p. 610, published online 21 March) and Wacker et al. (p. 615, published online 21 March) describe crystal structures of two members of the serotonin family of receptors bound to antimigraine medications or to a precursor of the hallucinogenic drug LSD. Subtle differences in the way particular ligands bind to the receptors cause substantial differences in the signals generated by the receptor and the consequent biological responses. The structures reveal how the same ligand can activate one or both of the two main serotonin receptor signaling mechanisms, depending on which particular receptor it binds. Structures of serotonin receptor family members in complex with the fungal alkaloid ergot offer clues for drug designers. [Also see Perspective by Palczewski and Kiser] Serotonin or 5-hydroxytryptamine (5-HT) regulates a wide spectrum of human physiology through the 5-HT receptor family. We report the crystal structures of the human 5-HT1B G protein–coupled receptor bound to the agonist antimigraine medications ergotamine and dihydroergotamine. The structures reveal similar binding modes for these ligands, which occupy the orthosteric pocket and an extended binding pocket close to the extracellular loops. The orthosteric pocket is formed by residues conserved in the 5-HT receptor family, clarifying the family-wide agonist activity of 5-HT. Compared with the structure of the 5-HT2B receptor, the 5-HT1B receptor displays a 3 angstrom outward shift at the extracellular end of helix V, resulting in a more open extended pocket that explains subtype selectivity. Together with docking and mutagenesis studies, these structures provide a comprehensive structural basis for understanding receptor-ligand interactions and designing subtype-selective serotonergic drugs.


Science | 2015

Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine

Ling Qin; Irina Kufareva; Lauren G. Holden; Chong Wang; Yi Zheng; Chunxia Zhao; Gustavo Fenalti; Huixian Wu; Gye Won Han; Vadim Cherezov; Ruben Abagyan; Raymond C. Stevens; Tracy M. Handel

Molecular “go” signals reveal their secrets Chemokines are proteins that direct how cells move within the body. For instance, chemokines help immune cells locate invading pathogens and ensure that cells position themselves correctly within a developing organ. Cells detect chemokines through G protein–coupled receptors on their surface; however, the molecular details of how these proteins interact remain unclear (see the Perspective by Standfuss). Qin et al. solved the crystal structure of the chemokine receptor CXCR4 bound to the viral chemokine vMIP-II. Burg et al. solved the crystal structure of a viral chemokine receptor bound to the chemokine domain of CX3CL1. Given the role of chemokines in a number of diseases, these results may help in future drug design. Science, this issue p. 1117, p. 1113; see also p. 1071 The crystal structure of the chemokine receptor CXCR4 bound to a viral chemokine provides insights into chemokine recognition. [Also see Perspective by Standfuss] Chemokines and their receptors control cell migration during development, immune system responses, and in numerous diseases, including inflammation and cancer. The structural basis of receptor:chemokine recognition has been a long-standing unanswered question due to the challenges of structure determination for membrane protein complexes. Here, we report the crystal structure of the chemokine receptor CXCR4 in complex with the viral chemokine antagonist vMIP-II at 3.1 angstrom resolution. The structure revealed a 1:1 stoichiometry and a more extensive binding interface than anticipated from the paradigmatic two-site model. The structure helped rationalize a large body of mutagenesis data and together with modeling provided insights into CXCR4 interactions with its endogenous ligand CXCL12, its ability to recognize diverse ligands, and the specificity of CC and CXC receptors for their respective chemokines.


Nature Communications | 2014

Structural basis for Smoothened receptor modulation and chemoresistance to anticancer drugs.

Chong Wang; Huixian Wu; Tama Evron; Eyal Vardy; Gye Won Han; Xi Ping Huang; Sandy J. Hufeisen; Thomas J. Mangano; Dan J. Urban; Vsevolod Katritch; Vadim Cherezov; Marc G. Caron; Bryan L. Roth; Raymond C. Stevens

The Smoothened receptor (SMO) mediates signal transduction in the hedgehog pathway, which is implicated in normal development and carcinogenesis. SMO antagonists can suppress the growth of some tumours; however, mutations at SMO have been found to abolish their antitumour effects, a phenomenon known as chemoresistance. Here we report three crystal structures of human SMO bound to the antagonists SANT1 and Anta XV, and the agonist, SAG1.5, at 2.6-2.8 Å resolution. The long and narrow cavity in the transmembrane domain of SMO harbours multiple ligand binding sites, where SANT1 binds at a deeper site as compared with other ligands. Distinct interactions at D473(6.54f) elucidated the structural basis for the differential effects of chemoresistance mutations on SMO antagonists. The agonist SAG1.5 induces a conformational rearrangement of the binding pocket residues, which could contribute to SMO activation. Collectively, these studies reveal the structural basis for the modulation of SMO by small molecules.


Methods | 2011

GPCR stabilization using the bicelle-like architecture of mixed sterol-detergent micelles

Aaron A. Thompson; Jeffrey J. Liu; Eugene Chun; Daniel Wacker; Huixian Wu; Vadim Cherezov; Raymond C. Stevens

The biophysical characterization of purified membrane proteins typically requires detergent mediated extraction from native lipid membrane environments. In the case of human G protein-coupled receptors (GPCRs), this process has been complicated by their conformational heterogeneity and the general lack of understanding the composition and interactions within the diverse human cellular membrane environment. Several successful GPCR structure determination efforts have shown that the addition of cholesterol analogs is often critical for maintaining protein stability. We have identified sterols that substantially increase the stability of the NOP receptor (ORL-1), a member of the opioid GPCR family, in a mixed micelle environment. Using dynamic light scattering and small-angle X-ray scattering, we have determined that the most thermal stabilizing sterol, cholesteryl hemisuccinate, induces the formation of a bicelle-like micelle architecture when mixed with dodecyl maltoside detergent. Together with mutagenesis studies and recent GPCR structures, our results provide indications that stabilization is attained through a combination of specific sterol binding to GPCRs and modulation of micelle morphology.


Journal of Medicinal Chemistry | 2012

Evaluation of Molecular Modeling of Agonist Binding in Light of the Crystallographic Structure of an Agonist-Bound A2A Adenosine Receptor

Francesca Deflorian; T. Santhosh Kumar; Khai Phan; Zhan-Guo Gao; Fei Xu; Huixian Wu; Vsevolod Katritch; Raymond C. Stevens; Kenneth A. Jacobson

Molecular modeling of agonist binding to the human A(2A) adenosine receptor (AR) was assessed and extended in light of crystallographic structures. Heterocyclic adenine nitrogens of cocrystallized agonist overlaid corresponding positions of the heterocyclic base of a bound triazolotriazine antagonist, and ribose moiety was coordinated in a hydrophilic region, as previously predicted based on modeling using the inactive receptor. Automatic agonist docking of 20 known potent nucleoside agonists to agonist-bound A(2A)AR crystallographic structures predicted new stabilizing protein interactions to provide a structural basis for previous empirical structure activity relationships consistent with previous mutagenesis results. We predicted binding of novel C2 terminal amino acid conjugates of A(2A)AR agonist CGS21680 and used these models to interpret effects on binding affinity of newly synthesized agonists. d-Amino acid conjugates were generally more potent than l-stereoisomers and free terminal carboxylates more potent than corresponding methyl esters. Amino acid moieties were coordinated close to extracellular loops 2 and 3. Thus, molecular modeling is useful in probing ligand recognition and rational design of GPCR-targeting compounds with specific pharmacological profiles.

Collaboration


Dive into the Huixian Wu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vadim Cherezov

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Vsevolod Katritch

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Gye Won Han

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Bryan L. Roth

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Chong Wang

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Eyal Vardy

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Xi Ping Huang

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Aaron A. Thompson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Daniel Wacker

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge