Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vadim Cherezov is active.

Publication


Featured researches published by Vadim Cherezov.


Science | 2007

High-Resolution Crystal Structure of an Engineered Human β2-Adrenergic G Protein–Coupled Receptor

Vadim Cherezov; Daniel M. Rosenbaum; Michael A. Hanson; Søren Rasmussen; Foon Sun Thian; Tong Sun Kobilka; Hee Jung Choi; Peter Kuhn; William I. Weis; Brian K. Kobilka; Raymond C. Stevens

Heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors constitute the largest family of eukaryotic signal transduction proteins that communicate across the membrane. We report the crystal structure of a human β2-adrenergic receptor–T4 lysozyme fusion protein bound to the partial inverse agonist carazolol at 2.4 angstrom resolution. The structure provides a high-resolution view of a human G protein–coupled receptor bound to a diffusible ligand. Ligand-binding site accessibility is enabled by the second extracellular loop, which is held out of the binding cavity by a pair of closely spaced disulfide bridges and a short helical segment within the loop. Cholesterol, a necessary component for crystallization, mediates an intriguing parallel association of receptor molecules in the crystal lattice. Although the location of carazolol in the β2-adrenergic receptor is very similar to that of retinal in rhodopsin, structural differences in the ligand-binding site and other regions highlight the challenges in using rhodopsin as a template model for this large receptor family.


Nature | 2013

Structure of the human glucagon class B G-protein-coupled receptor

Fai Yiu Siu; Min He; Chris de Graaf; Gye Won Han; Dehua Yang; Zhiyun Zhang; Caihong Zhou; Qingping Xu; Daniel Wacker; Jeremiah S. Joseph; Wei Liu; Jesper Lau; Vadim Cherezov; Vsevolod Katritch; Ming-Wei Wang; Raymond C. Stevens

Binding of the glucagon peptide to the glucagon receptor (GCGR) triggers the release of glucose from the liver during fasting; thus GCGR plays an important role in glucose homeostasis. Here we report the crystal structure of the seven transmembrane helical domain of human GCGR at 3.4 Å resolution, complemented by extensive site-specific mutagenesis, and a hybrid model of glucagon bound to GCGR to understand the molecular recognition of the receptor for its native ligand. Beyond the shared seven transmembrane fold, the GCGR transmembrane domain deviates from class A G-protein-coupled receptors with a large ligand-binding pocket and the first transmembrane helix having a ‘stalk’ region that extends three alpha-helical turns above the plane of the membrane. The stalk positions the extracellular domain (∼12 kilodaltons) relative to the membrane to form the glucagon-binding site that captures the peptide and facilitates the insertion of glucagon’s amino terminus into the seven transmembrane domain.


Science | 2008

The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist

Veli-Pekka Jaakola; Mark T. Griffith; Michael A. Hanson; Vadim Cherezov; Ellen Y.T. Chien; J. Robert Lane; Adriaan P. IJzerman; Raymond C. Stevens

The adenosine class of heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A2A adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extended conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.


Science | 2010

Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists.

Beili Wu; Ellen Y.T. Chien; Clifford D. Mol; Gustavo Fenalti; Wei Liu; Vsevolod Katritch; Ruben Abagyan; Alexei Brooun; Peter A. Wells; F. Christopher Bi; Damon J. Hamel; Peter Kuhn; Tracy M. Handel; Vadim Cherezov; Raymond C. Stevens

Regulating Migration The migration of cells around the body is an important factor in cancer development and the establishment of infection. Movement is induced by small proteins called chemokines, and so for a specific function, migration is controlled by a relevant chemokine binding to its respective receptor. This family of receptors is known as guanine (G) protein–coupled receptors, which span cell membranes to mediate between external signals from chemokines and internal mechanisms. The chemokine receptor CXCR4 is implicated in many types of cancer and in infection, and Wu et al. (p. 1066, published online 7 October; see the Report by Chien et al.) report on a series of crystal structures obtained for CXCR4 bound to small molecules. In every case, the same homodimer structure was observed, suggesting that the interface is functionally relevant. These structures offer insights into the interactions between CXCR4 and its natural chemokine, as well as with the virus HIV-1. Five crystal structures provide insight into chemokine and HIV-1 recognition. Chemokine receptors are critical regulators of cell migration in the context of immune surveillance, inflammation, and development. The G protein–coupled chemokine receptor CXCR4 is specifically implicated in cancer metastasis and HIV-1 infection. Here we report five independent crystal structures of CXCR4 bound to an antagonist small molecule IT1t and a cyclic peptide CVX15 at 2.5 to 3.2 angstrom resolution. All structures reveal a consistent homodimer with an interface including helices V and VI that may be involved in regulating signaling. The location and shape of the ligand-binding sites differ from other G protein–coupled receptors and are closer to the extracellular surface. These structures provide new clues about the interactions between CXCR4 and its natural ligand CXCL12, and with the HIV-1 glycoprotein gp120.


Science | 2009

The 2.6 Angstrom Crystal Structure of a Human A[subscript 2A] Adenosine Receptor Bound to an Antagonist

Veli-Pekka Jaakola; Mark T. Griffith; Michael A. Hanson; Vadim Cherezov; Ellen Y.T. Chien; J. Robert Lane; Adriaan P. IJzerman; Raymond C. Stevens; Leiden; Amsterdam

The adenosine class of heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) mediates the important role of extracellular adenosine in many physiological processes and is antagonized by caffeine. We have determined the crystal structure of the human A2A adenosine receptor, in complex with a high-affinity subtype-selective antagonist, ZM241385, to 2.6 angstrom resolution. Four disulfide bridges in the extracellular domain, combined with a subtle repacking of the transmembrane helices relative to the adrenergic and rhodopsin receptor structures, define a pocket distinct from that of other structurally determined GPCRs. The arrangement allows for the binding of the antagonist in an extended conformation, perpendicular to the membrane plane. The binding site highlights an integral role for the extracellular loops, together with the helical core, in ligand recognition by this class of GPCRs and suggests a role for ZM241385 in restricting the movement of a tryptophan residue important in the activation mechanism of the class A receptors.


Science | 2007

GPCR Engineering Yields High-Resolution Structural Insights into β2-Adrenergic Receptor Function

Daniel M. Rosenbaum; Vadim Cherezov; Michael A. Hanson; Søren Rasmussen; Foon Sun Thian; Tong Sun Kobilka; Hee Jung Choi; Xiao-Jie Yao; William I. Weis; Raymond C. Stevens; Brian K. Kobilka

The β2-adrenergic receptor (β2AR) is a well-studied prototype for heterotrimeric guanine nucleotide–binding protein (G protein)–coupled receptors (GPCRs) that respond to diffusible hormones and neurotransmitters. To overcome the structural flexibility of the β2AR and to facilitate its crystallization, we engineered a β2AR fusion protein in which T4 lysozyme (T4L) replaces most of the third intracellular loop of the GPCR (“β2AR-T4L”) and showed that this protein retains near-native pharmacologic properties. Analysis of adrenergic receptor ligand-binding mutants within the context of the reported high-resolution structure of β2AR-T4L provides insights into inverse-agonist binding and the structural changes required to accommodate catecholamine agonists. Amino acids known to regulate receptor function are linked through packing interactions and a network of hydrogen bonds, suggesting a conformational pathway from the ligand-binding pocket to regions that interact with G proteins.


Science | 2010

Structure of the human dopamine d3 receptor in complex with a d2/d3 selective antagonist.

Ellen Y.T. Chien; Wei Liu; Qiang Zhao; Vsevolod Katritch; Gye Won Han; Michael A. Hanson; Lei Shi; Amy Hauck Newman; Jonathan A. Javitch; Vadim Cherezov; Raymond C. Stevens

Tweaking Dopamine Reception Dopamine modulates many cognitive and emotional functions of the human brain by activating G protein–coupled receptors. Antipsychotic drugs that block two of the receptor subtypes are used to treat schizophrenia but have multiple side effects. Chien et al. (p. 1091; see the Research Article by Wu et al.) resolved the crystal structure of one receptor in complex with a small-molecule inhibitor at 3.15 angstrom resolution. Homology modeling with other receptor subtypes might be a promising route to reveal potential structural differences that can be exploited in the design of selective therapeutic inhibitors having fewer side effects. Discovery of a binding site in the extracellular domain of a dopamine receptor offers hope for more selective therapeutics. Dopamine modulates movement, cognition, and emotion through activation of dopamine G protein–coupled receptors in the brain. The crystal structure of the human dopamine D3 receptor (D3R) in complex with the small molecule D2R/D3R-specific antagonist eticlopride reveals important features of the ligand binding pocket and extracellular loops. On the intracellular side of the receptor, a locked conformation of the ionic lock and two distinctly different conformations of intracellular loop 2 are observed. Docking of R-22, a D3R-selective antagonist, reveals an extracellular extension of the eticlopride binding site that comprises a second binding pocket for the aryl amide of R-22, which differs between the highly homologous D2R and D3R. This difference provides direction to the design of D3R-selective agents for treating drug abuse and other neuropsychiatric indications.


Science | 2011

Structure of an Agonist-Bound Human A2A Adenosine Receptor

Fei Xu; Huixian Wu; Vsevolod Katritch; Gye Won Han; Kenneth A. Jacobson; Zhan-Guo Gao; Vadim Cherezov; Raymond C. Stevens

Changes associated with conformationally selective agonist binding shed light on G protein–coupled receptor activation. Activation of G protein–coupled receptors upon agonist binding is a critical step in the signaling cascade for this family of cell surface proteins. We report the crystal structure of the A2A adenosine receptor (A2AAR) bound to an agonist UK-432097 at 2.7 angstrom resolution. Relative to inactive, antagonist-bound A2AAR, the agonist-bound structure displays an outward tilt and rotation of the cytoplasmic half of helix VI, a movement of helix V, and an axial shift of helix III, resembling the changes associated with the active-state opsin structure. Additionally, a seesaw movement of helix VII and a shift of extracellular loop 3 are likely specific to A2AAR and its ligand. The results define the molecule UK-432097 as a “conformationally selective agonist” capable of receptor stabilization in a specific active-state configuration.


Nature | 2012

Structure of the human κ-opioid receptor in complex with JDTic

Huixian Wu; Daniel Wacker; Mauro Mileni; Vsevolod Katritch; Gye Won Han; Eyal Vardy; Wei Liu; Aaron A. Thompson; Xi Ping Huang; F. Ivy Carroll; S. Wayne Mascarella; Richard B. Westkaemper; Philip D. Mosier; Bryan L. Roth; Vadim Cherezov; Raymond C. Stevens

Opioid receptors mediate the actions of endogenous and exogenous opioids on many physiological processes, including the regulation of pain, respiratory drive, mood, and—in the case of κ-opioid receptor (κ-OR)—dysphoria and psychotomimesis. Here we report the crystal structure of the human κ-OR in complex with the selective antagonist JDTic, arranged in parallel dimers, at 2.9 Å resolution. The structure reveals important features of the ligand-binding pocket that contribute to the high affinity and subtype selectivity of JDTic for the human κ-OR. Modelling of other important κ-OR-selective ligands, including the morphinan-derived antagonists norbinaltorphimine and 5′-guanidinonaltrindole, and the diterpene agonist salvinorin A analogue RB-64, reveals both common and distinct features for binding these diverse chemotypes. Analysis of site-directed mutagenesis and ligand structure–activity relationships confirms the interactions observed in the crystal structure, thereby providing a molecular explanation for κ-OR subtype selectivity, and essential insights for the design of compounds with new pharmacological properties targeting the human κ-OR.


Annual Review of Pharmacology and Toxicology | 2013

Structure-Function of the G Protein–Coupled Receptor Superfamily

Vsevolod Katritch; Vadim Cherezov; Raymond C. Stevens

During the past few years, crystallography of G protein-coupled receptors (GPCRs) has experienced exponential growth, resulting in the determination of the structures of 16 distinct receptors-9 of them in 2012 alone. Including closely related subtype homology models, this coverage amounts to approximately 12% of the human GPCR superfamily. The adrenergic, rhodopsin, and adenosine receptor systems are also described by agonist-bound active-state structures, including a structure of the receptor-G protein complex for the β(2)-adrenergic receptor. Biochemical and biophysical techniques, such as nuclear magnetic resonance and hydrogen-deuterium exchange coupled with mass spectrometry, are providing complementary insights into ligand-dependent dynamic equilibrium between different functional states. Additional details revealed by high-resolution structures illustrate the receptors as allosteric machines that are controlled not only by ligands but also by ions, lipids, cholesterol, and water. This wealth of data is helping redefine our knowledge of how GPCRs recognize such a diverse array of ligands and how they transmit signals 30 angstroms across the cell membrane; it also is shedding light on a structural basis of GPCR allosteric modulation and biased signaling.

Collaboration


Dive into the Vadim Cherezov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Liu

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Vsevolod Katritch

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Gye Won Han

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Andrii Ishchenko

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Michael A. Hanson

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Uwe Weierstall

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Petra Fromme

Arizona State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sébastien Boutet

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge