Hung-Yu Shih
Chang Gung University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hung-Yu Shih.
Cellular and Molecular Life Sciences | 2013
Yi-Chuan Cheng; Paul J. Scotting; Li-Sung Hsu; Sheng-Jia Lin; Hung-Yu Shih; Fu-Yu Hsieh; Hui-Lan Wu; Chu-Li Tsao; Chia-Jung Shen
The schizophrenia susceptibility gene, Rgs4, is one of the most intensively studied regulators of G-protein signaling members, well known to be fundamental in regulating neurotransmission. However, little is known about its role in the developing nervous system. We have isolated zebrafish rgs4 and shown that it is transcribed in the developing nervous system. Rgs4 knockdown did not affect neuron number and patterning but resulted in locomotion defects and aberrant development of axons. This was confirmed using a selective Rgs4 inhibitor, CCG-4986. Rgs4 knockdown also attenuated the level of phosphorylated-Akt1, and injection of constitutively-activated AKT1 rescued the motility defects and axonal phenotypes in the spinal cord but not in the hindbrain and trigeminal neurons. Our in vivo analysis reveals a novel role for Rgs4 in regulating axonogenesis during embryogenesis, which is mediated by another schizophrenia-associated gene, Akt1, in a region-specific manner.
Developmental Biology | 2013
Fu-Yu Hsieh; Tsu-Lin Ma; Hung-Yu Shih; Sheng-Jia Lin; Ching-Wen Huang; Hsiao-Yun Wang; Yi-Chuan Cheng
Delta/notch-like epidermal growth factor (EGF)-related receptor (DNER) is a single-pass transmembrane protein found to be a novel ligand in the Notch signaling pathway. Its function was previously characterized in the developing cerebellum and inner ear hair cells. In this study, we isolated a zebrafish homolog of DNER and showed that this gene is expressed in the developing nervous system. Overexpression of dner or the intracellular domain of dner was sufficient to inhibit the proliferation of neural progenitors and induce neuronal and glial differentiation. In contrast, the knockdown of endogenous Dner expression using antisense morpholino oligonucleotides increased the proliferation of neural progenitors and maintained neural cells in a progenitor status through inhibition of neuronal and glial differentiation. Through analysis of the antagonistic effect on the Delta ligand and the role of the potential downstream mediator Deltex1, we showed that Dner acts in Notch-dependent and Notch-independent manner. This is the first study to demonstrate a role for Dner in neural progenitors and neuronal differentiation and provides new insights into mediation of neuronal development and differentiation by the Notch signaling pathway.
PLOS ONE | 2013
Yi-Chuan Cheng; Fu-Yu Hsieh; Ming-Chang Chiang; Paul J. Scotting; Hung-Yu Shih; Sheng-Jia Lin; Hui-Lan Wu; Han-Ting Lee
Akt1 is well known for its role in regulating cell proliferation, differentiation, and apoptosis and is implicated in tumors and several neurological disorders. However, the role of Akt1 in neural development has not been well defined. We have isolated zebrafish akt1 and shown that this gene is primarily transcribed in the developing nervous system, and its spatiotemporal expression pattern suggests a role in neural differentiation. Injection of akt1 morpholinos resulted in loss of neuronal precursors with a concomitant increase in post-mitotic neurons, indicating that knockdown of Akt1 is sufficient to cause premature differentiation of neurons. A similar phenotype was observed in embryos deficient for Notch signaling. Both the ligand (deltaA) and the downstream target of Notch (her8a) were downregulated in akt1 morphants, indicating that Akt1 is required for Delta-Notch signaling. Furthermore, akt1 expression was downregulated in Delta-Notch signaling-deficient embryos and could be induced by constitutive activation of Notch signaling. In addition, knockdown of Akt1 was able to nullify the inhibition of neuronal differentiation caused by constitutive activation of Notch signaling. Taken together, these results provide in vivo evidence that Akt1 interacts with Notch signaling reciprocally and provide an explanation of why Akt1 is essential for the inhibition of neuronal differentiation.
Neural Development | 2015
Yi-Chuan Cheng; Yin-Cheng Huang; Tu-Hsueh Yeh; Hung-Yu Shih; Ching-Yu Lin; Sheng-Jia Lin; Ching-Chi Chiu; Ching-Wen Huang; Yun-Jin Jiang
BackgroundNotch signaling has been conserved throughout evolution and plays a fundamental role in various neural developmental processes and the pathogenesis of several human cancers and genetic disorders. However, how Notch signaling regulates various cellular processes remains unclear. Although Deltex proteins have been identified as cytoplasmic downstream elements of the Notch signaling pathway, few studies have been reported on their physiological role.ResultsWe isolated zebrafish deltex1 (dtx1) and showed that this gene is primarily transcribed in the developing nervous system, and its spatiotemporal expression pattern suggests a role in neural differentiation. The transcription of dtx1 was suppressed by the direct binding of the Notch downstream transcription factors Her2 and Her8a. Overexpressing the complete coding sequence of Dtx1 was necessary for inducing neuronal and glial differentiation. By contrast, disrupting Dtx1 expression by using a Dtx1 construct without the RING finger domain reduced neuronal and glial differentiation. This effect was phenocopied by the knockdown of endogenous Dtx1 expression by using morpholinos, demonstrating the essential function of the RING finger domain and confirming the knockdown specificity. Cell proliferation and apoptosis were unaltered in Dtx1-overexpressed and -deficient zebrafish embryos. Examination of the expression of her2 and her8a in embryos with altered Dtx1 expression showed that Dxt1-induced neuronal differentiation did not require a regulatory effect on the Notch–Hairy/E(Spl) pathway. However, both Dtx1 and Notch activation induced glial differentiation, and Dtx1 and Notch activation negatively inhibited each other in a reciprocal manner, which achieves a proper balance for the expression of Dtx1 and Notch to facilitate glial differentiation. We further confirmed that the Dtx1–Notch–Hairy/E(Spl) cascade was sufficient to induce neuronal and glial differentiation by concomitant injection of an active form of Notch with dtx1, which rescued the neuronogenic and gliogenic defects caused by the activation of Notch signaling.ConclusionsOur results demonstrated that Dtx1 is regulated by Notch–Hairy/E(Spl) signaling and is a major factor specifically regulating neural differentiation. Thus, our results provide new insights into the mediation of neural development by the Notch signaling pathway.
Journal of Cell Science | 2013
Shin-Yi Chen; Hung-Yu Shih; Sheng-Jia Lin; Chung-Der Hsiao; Zih-Cing Li; Yi-Chuan Cheng
Summary Hematopoietic and vascular endothelial cells constitute the circulatory system and are both generated from the ventral mesoderm. However, the molecules and signaling pathways involved in ventral mesoderm formation and specification remain unclear. We found that zebrafish etv5a was expressed in the ventral mesoderm during gastrulation. Knockdown of Etv5a using morpholinos increased the proliferation of ventral mesoderm cells and caused defects in hematopoietic derivatives and in vascular formation. By contrast, the formation of other mesodermal derivatives, such as pronephros, somites and the gut wall, was not affected. Knockdown specificity was further confirmed by overexpression of an etv5a construct lacking its acidic domain. In conclusion, our data reveal that etv5a is essential for the inhibition of ventral mesoderm cell proliferation and for the formation of the hemato-vascular lineage.
Histochemistry and Cell Biology | 2012
Shu-Yuan Hsu; Yi-Chuan Cheng; Hung-Yu Shih; Pin Ouyang
Pinin (pnn), a nuclear and desmosome-associated SR-like protein, has been shown to play multiple roles in cell adhesion, transcriptional regulation, pre-mRNA splicing and mRNA export. Because of the embryonic lethality of pnn-deficient mice, here we used the zebrafish system to investigate the functions of pnn. Injection of morpholinos into zebrafish to knockdown pnn resulted in several obvious defective phenotypes, such as short body, bent tail, and an abnormal pigment distribution pattern. Moreover, aberrant blood vessels were formed, and most of the cartilages of pharyngeal arches 3–7 were reduced or absent in pnn morphants. Because most of the defects manifested by pnn morphants were reminiscent of those caused by neural crest-derived malformation, we investigated the effects of pnn deficiency in the development of neural crest cells. Neural crest induction and specification were not hindered in pnn morphants, as revealed by normal expression of early crest gene, sox10. However, the morphants failed to express the pre-chondrogenic gene, sox9a, in cells populating the posterior pharyngeal arches. The reduction of chondrogenic precursors resulted from inhibition of proliferation of neural crest cells, but not from cellular apoptosis or premature differentiation in pnn morphants. These data demonstrate that pnn is essential for the maintenance of subsets of neural crest cells, and that in zebrafish proper cranial neural crest proliferation and differentiation are dependent on pnn expression.
Stem Cells | 2017
Hung-Yu Shih; Shu-Yuan Hsu; Pin Ouyang; Sheng-Jia Lin; Ting-Yun Chou; Ming-Chang Chiang; Yi-Chuan Cheng
Neural crest progenitor cells, which give rise to many ectodermal and mesodermal derivatives, must maintain a delicate balance of apoptosis and proliferation for their final tissue contributions. Here we show that zebrafish bmp5 is expressed in neural crest progenitor cells and that it activates the Smad and Erk signaling pathways to regulate cell survival and proliferation, respectively. Loss‐of‐function analysis showed that Bmp5 was required for cell survival and this response is mediated by the Smad–Msxb signaling cascade. However, the Bmp5–Smad–Msxb signaling pathway had no effect on cell proliferation. In contrast, Bmp5 was sufficient to induce cell proliferation through the Mek–Erk–Id3 signaling cascade, whereas disruption of this signaling cascade had no effect on cell survival. Taken together, our results demonstrate an important regulatory mechanism for bone morphogenic protein‐initiated signal transduction underlying the formation of neural crest progenitors. Stem Cells 2017;35:1003–1014
Stem Cells and Development | 2015
Feng-Chun Hung; Hung-Yu Shih; Yi-Chuan Cheng; Chuck C.-K. Chao
Growth-arrest-specific 7 (Gas7) is preferentially expressed in the nervous system and plays an important role during neuritogenesis in vertebrates. We recently demonstrated that gas7 is highly expressed in zebrafish neurons, where it regulates neural development. The possibility that gas7 may also regulate the development of other tissues remains to be examined. In this study, we investigate the role of Gas7 in the development of craniofacial tissues. Knockdown of gas7 using morpholino oligomers produced abnormal phenotypes in neural crest (NC) cells and their derivatives. NC-derived cartilage maturation was altered in Gas7 morphants as revealed by aberrant sox9b and dlx2 expression, a phenotype that could be rescued by coinjection of gas7 mRNA. While rhombomere morphology remained normal in Gas7 morphants, we observed reduced expression of the prechondrogenic genes sox9b and dlx2 in cells populating the posterior pharyngeal arches, but the fundamental structure of pharyngeal arches was preserved. In addition, NC cell sublineages that migrate to form neurons, glial cells, and melanocytes were altered in Gas7 morphants as revealed by aberrant expression of neurod, foxd3, and mitfa, respectively. Development of NC progenitors was also examined in Gas7 morphants at 12 hpf, and we observed that the reduction of cell precursors in Gas7 morphants was due to increased apoptosis level. These results indicate that the formation of NC progenitors and derivatives depends on Gas7 expression. Our observations also suggest that Gas7 regulates the formation of NC derivatives constituting the internal tissues of pharyngeal arches, without affecting the fundamental structure of mesodermal-derived pharyngeal arches.
Experimental Neurology | 2018
Tu-Hsueh Yeh; Han-Fang Liu; Yu-Wen Li; Chin-Song Lu; Hung-Yu Shih; Ching-Chi Chiu; Sheng-Jia Lin; Yin-Cheng Huang; Yi-Chuan Cheng
ABSTRACT Hexanucleotide repeat expansions in the C9orf72 gene are a common genetic cause of familial and sporadic amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the function of C9orf72 in neural development and the pathogenic mechanism underlying neurodegeneration are unknown. We found that disrupting C9orf72 expression by using C9orf72 constructs that lack the complete DENN domain result in reduced GTPase activity in zebrafish embryos, demonstrating the indispensability of the complete DENN domain. This effect was phenocopied by knocking down endogenous C9orf72 expression by using morpholinos. C9orf72‐deficient zebrafish embryos exhibited impaired axonogenesis and motility defects. The C9orf72 deficiency upregulated the expression of tp53 and caused neuronal apoptosis. Knockdown Tp53 in the C9orf72‐deficient embryos rescued only the apoptotic phenotype but not the phenotype with axonal and motility defects. The C9orf72 deficiency also induced ccng1 (encodes Cyclin G1) mRNA expression, and injection of a dominant‐negative Cyclin G1 construct rescued the axonal impairment, apoptosis, and motility defects in the C9orf72‐deficient embryos. Our results revealed the GTPase activity of C9orf72 and demonstrated that Cyclin G1 is an essential downstream mediator for C9orf72 in neural development and motility. Furthermore, downregulating Cyclin G1 was sufficient to rescue all the defects caused by C9orf72 deficiency. In summary, we revealed a novel regulatory mechanism underlying the role of C9orf72 in neurological and motility defects. This result facilitates understanding the function of the C9orf72 gene in the developing nervous system and provides a potential mechanism underlying the pathogenesis of ALS–FTD. HIGHLIGHTSC9orf72 regulates neurogenesis and motility requires a complete DENN domain.C9orf72 deficiency affects axon formation and spinal motor activity.C9orf72‐deficient zebrafish exhibit reduced GTPase activity.C9orf72 regulates neuronal apoptosis via Tp53.C9orf72‐regulated apoptosis, axonogenesis, and motility requires Cyclin G1 function.
Developmental Dynamics | 2018
Yen-Che Hsieh; Ming-Chang Chiang; Yin-Cheng Huang; Tu-Hsueh Yeh; Hung-Yu Shih; Han-Fang Liu; Hao-Yuan Chen; Chien-Ping Wang; Yi-Chuan Cheng
Background: Many molecules and signaling pathways involved in neural development play a role in neurodegenerative diseases and brain tumor progression. Peroxisome proliferator‐activated receptor (PPAR) proteins regulate the differentiation of tissues and the progression of many diseases. However, the role of these proteins in neural development is unclear. Results: We examined the function of Pparα in the neural development of zebrafish. Two duplicate paralogs for mammalian PPARA/Ppara, namely pparaa and pparab, are present in the zebrafish genome. Both pparaa and pparab are expressed in the developing central nervous system in zebrafish embryos. Inhibiting the function of Pparα by using either the PPARα/Pparα antagonist GW6471 or pparaa or pparab truncated constructs produced identical phenotypes, which were sufficient to reduce the proliferation of neuronal and glial precursor cells without affecting the formation of neural progenitors. Conclusions: We demonstrated that both Pparαa and Pparαb proteins are essential regulators of the proliferation of neuronal and glial precursors. This study provides a better understanding of the functions of PPARα/Pparα in neural development and further expands our knowledge of the potential role of PPARα/Pparα in neurological disorders and brain tumors. Developmental Dynamics 247:1264–1275, 2018.