Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yi-Chuan Cheng is active.

Publication


Featured researches published by Yi-Chuan Cheng.


Journal of The American Society of Nephrology | 2011

Inhibition of the P2X7 Receptor Reduces Cystogenesis in PKD

Ming Yang Chang; Jenn Kan Lu; Ya Chung Tian; Yung Chang Chen; Cheng Chieh Hung; Yi Hui Huang; Yau-Hung Chen; Mai Szu Wu; Chih-Wei Yang; Yi-Chuan Cheng

The P2X7 receptor participates in purinergic signaling, which may promote the progression of ADPKD. We examined the effects of a P2X7 receptor antagonist and a P2X7 receptor agonist on cyst development in a zebrafish model of polycystic kidney disease in which we knocked down pkd2 by morpholinos. We used live wt-1b pronephric-specific GFP-expressing zebrafish embryos to directly observe changes in the pronephros. Exposure of pkd2-morphant zebrafish to a P2X7 receptor antagonist (oxidized ATP [OxATP]) significantly reduced the frequency of the cystic phenotype compared with either exposure to a P2X7 receptor agonist (BzATP) or with no treatment (P < 0.01). Histology confirmed improvement of glomerular cysts in OxATP-treated pkd2 morphants. OxATP also reduced p-ERK activity and cell proliferation in pronephric kidneys in pkd2 morphants. Inhibition of P2X7 with an additional specific antagonist (A-438079), and through morpholino-mediated knockdown of p2rx7, confirmed these effects. In conclusion, blockade of the P2X7 receptor reduces cyst formation via ERK-dependent pathways in a zebrafish model of polycystic kidney disease, suggesting that P2X7 antagonists may have therapeutic potential in ADPKD.


Biochimica et Biophysica Acta | 2015

The neuroprotective role of metformin in advanced glycation end product treated human neural stem cells is AMPK-dependent.

Ming-Min Chung; Yen-Lin Chen; Dee Pei; Yi-Chuan Cheng; Binggui Sun; Christopher J. Nicol; Chia-Hui Yen; Han-Min Chen; Yao-Jen Liang; Ming-Chang Chiang

Diabetic neuronal damage results from hyperglycemia followed by increased formation of advanced glycosylation end products (AGEs), which leads to neurodegeneration, although the molecular mechanisms are still not well understood. Metformin, one of the most widely used anti-diabetic drugs, exerts its effects in part by activation of AMP-activated protein kinase (AMPK). AMPK is a critical evolutionarily conserved enzyme expressed in the liver, skeletal muscle and brain, and promotes cellular energy homeostasis and biogenesis by regulating several metabolic processes. While the mechanisms of AMPK as a metabolic regulator are well established, the neuronal role for AMPK is still unknown. In the present study, human neural stem cells (hNSCs) exposed to AGEs had significantly reduced cell viability, which correlated with decreased AMPK and mitochondria associated gene/protein (PGC1α, NRF-1 and Tfam) expressions, as well as increased activation of caspase 3 and 9 activities. Metformin prevented AGEs induced cytochrome c release from mitochondria into cytosol in the hNSCs. Co-treatment with metformin significantly abrogated the AGE-mediated effects in hNSCs. Metformin also significantly rescued hNSCs from AGE-mediated mitochondrial deficiency (lower ATP, D-loop level, mitochondrial mass, maximal respiratory function, COX activity, and mitochondrial membrane potential). Furthermore, co-treatment of hNSCs with metformin significantly blocked AGE-mediated reductions in the expression levels of several neuroprotective genes (PPARγ, Bcl-2 and CREB). These findings extend our understanding of the molecular mechanisms of both AGE-induced neuronal toxicity, and AMPK-dependent neuroprotection by metformin. This study further suggests that AMPK may be a potential therapeutic target for treating diabetic neurodegeneration.


Neuroscience | 2013

PPARγ regulates the mitochondrial dysfunction in human neural stem cells with tumor necrosis factor alpha

Ming-Chang Chiang; Yi-Chuan Cheng; Kuan-Hung Lin; Chia-Hui Yen

Peroxisome proliferator-activated receptor gamma (PPARγ) belongs to a family of ligand-activated transcription factors, and its ligands are known to control many physiological and pathological conditions. The hypothesis of our study was that the PPARγ agonist (rosiglitazone) could mediate tumor necrosis factor alpha (TNFα) related to the regulation of human neural stem cells (hNSCs), by which TNFα possibly fulfills important roles in neuronal impairment. The results show that PPARγ mediates the cell viability of hNSCs via the downregulation of the activity of caspase 3, indicating that this rescue effect of PPARγ could improve the reduced levels of two mitochondrial regulators, adenosine monophosphate-activated protein kinase (AMPK) and Sirtuin 1 (SIRT1) in the hNSCs with TNFα. The stimulation of mitochondrial function by PPARγ was associated with activation of the PPAR coactivator1 alpha (PGC1α) pathway by up-regulation of oxidative defense and mitochondrial systems. The above protective effects appeared to be exerted by a direct activation of the rosiglitazone, because it protected hNSCs from TNFα-evoked oxidative stress and mitochondrial deficiency. Here we show that the rosiglitazone protects hNSCs against Aβ-induced apoptosis and promotes cell survival. These findings extend our understanding of the central role of PPARγ in TNFα-related neuronal impairment, which probably increases risks of neurodegenerative diseases. The anti-inflammatory effects of PPARγ in the hNSCs with TNFα, and the involved mechanisms were also characterized.


Neurobiology of Aging | 2016

Rosiglitazone activation of PPARγ-dependent pathways is neuroprotective in human neural stem cells against amyloid-beta-induced mitochondrial dysfunction and oxidative stress.

Ming-Chang Chiang; Christopher J. Nicol; Yi-Chuan Cheng; Kuan-Hung Lin; Chia-Hui Yen; Chien-Hung Lin

Neuronal cell impairment, such as that induced by amyloid-beta (Aβ) protein, is a process with limited therapeutic interventions and often leads to long-term neurodegeneration common in disorders such as Alzheimers disease. Interestingly, peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated nuclear receptor whose ligands control many physiological and pathologic processes, and may be neuroprotective. We hypothesized that rosiglitazone, a PPARγ agonist, would prevent Aβ-mediated effects in human neural stem cells (hNSCs). Here, we show that rosiglitazone reverses, via PPARγ-dependent downregulation of caspase 3 and 9 activity, the Aβ-mediated decreases in hNSC cell viability. In addition, Aβ decreases hNSC messenger RNA (mRNA) levels of 2 neuroprotective factors (Bcl-2 and CREB), but co-treatment with rosiglitazone significantly rescues these effects. Rosiglitazone co-treated hNSCs also showed significantly increased mitochondrial function (reflected by levels of adenosine triphosphate and Mit mass), and PPARγ-dependent mRNA upregulation of PGC1α and mitochondrial genes (nuclear respiratory factor-1 and Tfam). Furthermore, hNSCs co-treated with rosiglitazone were significantly rescued from Aβ-induced oxidative stress and correlates with reversal of the Aβ-induced mRNA decrease in oxidative defense genes (superoxide dismutase 1, superoxide dismutase 2, and glutathione peroxidase 1). Taken together, these novel findings show that rosiglitazone-induced activation of PPARγ-dependent signaling rescues Aβ-mediated toxicity in hNSCs and provide evidence supporting a neuroprotective role for PPARγ activating drugs in Aβ-related diseases such as Alzheimers disease.


Mitochondrion | 2014

Rosiglitazone promotes neurite outgrowth and mitochondrial function in N2A cells via PPARgamma pathway.

Ming-Chang Chiang; Yi-Chuan Cheng; Han-Min Chen; Yao-Jen Liang; Chia-Hui Yen

Several pieces of evidence indicate that peroxisome proliferator-activated receptor gamma (PPARγ) stimulation promotes neuronal differentiation. However, to date, the effects of a synthetic PPARγ agonist (Rosiglitazone, Rosi) on neurite outgrowth have not yet been well described. Here we have evaluated the effects of Rosi on neurite outgrowth and mitochondrial function in the mouse neuroblastoma Neuro 2a (N2A) cell line. Our results show that Rosi promotes neurite outgrowth of N2A cells and significantly increases the population of neurite-bearing cells, with apparent increase of intracellular calcium and the expression of calmodulin-dependent kinase I (CaMKI). Rosi also increases the intracellular cAMP and expression of both protein kinase A (PKA) and cAMP response element binding protein (CREB). Phosphorylation of CREB was also detected in the Rosi treated N2A cells. Moreover, Rosi significantly increases the transcription of AMP-activated kinase (AMPK) and Sirtuin 1 (SIRT1). Besides, the expression of PPAR coactivator 1α (PGC1α), as well as the mRNA level its downstream genes, including nuclear respiratory factors 1 and 2 (NRF1 and NRF2) and mitochondrial transcription factor A (Tfam) were induced by Rosi treatments. Furthermore, Rosi increases the level of ATP, D-loop, and mitochondrial mass in N2A cells. Collectively, these findings provide an array of evidence that PPARγ activation provides beneficial neuronal networks within neurite outgrowth.


Journal of Neuroscience Methods | 2012

Beta-adrenoceptor pathway enhances mitochondrial function in human neural stem cells via rotary cell culture system

Ming Chang Chiang; Heng Lin; Yi-Chuan Cheng; Chia Hui Yen; Rong-Nan Huang; Kuan-Hung Lin

The structure and function of the human nervous system are altered in space when compared with their state on earth. To investigate directly the influence of simulated microgravity conditions which may be beneficial for cultivation and proliferation of human neural stem cells (hNSCs), the rotary cell culture system (RCCS) developed at the National Aeronautics and Space Administration (NASA) was used. RCCS allows the creation of a unique microgravity environment of low shear force, high-mass transfer and enables three-dimensional (3D) cell culture of dissimilar cell types. The results show that simulated microgravity using an RCCS would induce β-adrenoceptor, upregulate cAMP formation and activate both PKA and CREB (cAMP response element binding protein) pathways. The expression of intracellular mitochondrial genes, including PGC1α (PPAR coactivator 1α), nuclear respiratory factors 1 and 2 (NRF1 and NRF2) and mitochondrial transcription factor A (Tfam), regulated by CREB, were all significantly increased at 72 h after the onset of microgravity. Accordingly and importantly, the ATP level and amount of mitochondrial mass were also increased. These results suggest that exposure to simulated microgravity using an RCCS would induce cellular proliferation in hNSCs via an increased mitochondrial function. In addition, the RCCS bioreactor would support hNSCs growth, which may have the potential for cell replacement therapy in neurological disorders.


Cellular and Molecular Life Sciences | 2013

Zebrafish rgs4 is essential for motility and axonogenesis mediated by Akt signaling

Yi-Chuan Cheng; Paul J. Scotting; Li-Sung Hsu; Sheng-Jia Lin; Hung-Yu Shih; Fu-Yu Hsieh; Hui-Lan Wu; Chu-Li Tsao; Chia-Jung Shen

The schizophrenia susceptibility gene, Rgs4, is one of the most intensively studied regulators of G-protein signaling members, well known to be fundamental in regulating neurotransmission. However, little is known about its role in the developing nervous system. We have isolated zebrafish rgs4 and shown that it is transcribed in the developing nervous system. Rgs4 knockdown did not affect neuron number and patterning but resulted in locomotion defects and aberrant development of axons. This was confirmed using a selective Rgs4 inhibitor, CCG-4986. Rgs4 knockdown also attenuated the level of phosphorylated-Akt1, and injection of constitutively-activated AKT1 rescued the motility defects and axonal phenotypes in the spinal cord but not in the hindbrain and trigeminal neurons. Our in vivo analysis reveals a novel role for Rgs4 in regulating axonogenesis during embryogenesis, which is mediated by another schizophrenia-associated gene, Akt1, in a region-specific manner.


Experimental Cell Research | 2016

Metformin activation of AMPK-dependent pathways is neuroprotective in human neural stem cells against Amyloid-beta-induced mitochondrial dysfunction

Ming-Chang Chiang; Yi-Chuan Cheng; Shiang-Jiuun Chen; Chia-Hui Yen; Rong-Nan Huang

Alzheimers disease (AD) is the general consequence of dementia and is diagnostic neuropathology by the cumulation of amyloid-beta (Aβ) protein aggregates, which are thought to promote mitochondrial dysfunction processes leading to neurodegeneration. AMP-activated protein kinase (AMPK), a critical regulator of energy homeostasis and a major player in lipid and glucose metabolism, is potentially implied in the mitochondrial deficiency of AD. Metformin, one of the widespread used anti- metabolic disease drugs, use its actions in part by stimulation of AMPK. While the mechanisms of AD are well established, the neuronal roles for AMPK in AD are still not well understood. In the present study, human neural stem cells (hNSCs) exposed to Aβ had significantly reduced cell viability, which correlated with decreased AMPK, neuroprotective genes (Bcl-2 and CREB) and mitochondria associated genes (PGC1α, NRF-1 and Tfam) expressions, as well as increased activation of caspase 3/9 activity and cytosolic cytochrome c. Co-treatment with metformin distinct abolished the Aβ-caused actions in hNSCs. Metformin also significantly rescued hNSCs from Aβ-mediated mitochondrial deficiency (lower D-loop level, mitochondrial mass, maximal respiratory function, COX activity, and mitochondrial membrane potential). Importantly, co-treatment with metformin significantly restored fragmented mitochondria to almost normal morphology in the hNSCs with Aβ. These findings extend our understanding of the central role of AMPK in Aβ-related neuronal impairment. Thus, a better understanding of AMPK might assist in both the recognition of its critical effects and the implementation of new therapeutic strategies in the treatment of AD.


Experimental Cell Research | 2015

Rosiglitazone activation of PPARγ-dependent signaling is neuroprotective in mutant huntingtin expressing cells

Ming-Chang Chiang; Yi-Chuan Cheng; Christopher J. Nicol; Kuan-Hung Lin; Chia-Hui Yen; Shiang-Jiuun Chen; Rong-Nan Huang

Peroxisome proliferator-activated receptor gamma (PPARγ) is a crucial transcription factor for neuroprotection in several brain diseases. Using a mouse model of Huntingtons Disease (HD), we recently showed that PPARγ not only played a major function in preventing HD, but also oral intake of a PPARγ agonist (thiazolidinedione, TZD) significantly reduced the formation of mutant Huntingtin (mHtt) aggregates in the brain (e.g., cortex and striatum). The molecular mechanisms by which PPARγ exerts its HD neuroprotective effects remain unresolved. We investigated whether the PPARγ agonist (rosiglitazone) mediates neuroprotection in the mHtt expressing neuroblastoma cell line (N2A). Here we show that rosiglitazone upregulated the endogenous expression of PPARγ, its downstream target genes (including PGC1α, NRF-1 and Tfam) and mitochondrial function in mHtt expressing N2A cells. Rosiglitazone treatment also significantly reduced mHtt aggregates that included ubiquitin (Ub) and heat shock factor 1 (HSF1), as assessed by a filter-retardation assay, and increased the levels of the functional ubiquitin-proteasome system (UPS), HSF1 and heat shock protein 27/70 (HSP27/70) in N2A cells. Moreover, rosiglitazone treatment normalized endoplasmic reticulum (ER) stress sensors Bip, CHOP and ASK1, and significantly increased N2A cell survival. Taken together, these findings unveil new insights into the mechanisms by which activation of PPARγ signaling protects against the HD-mediated neuronal impairment. Further, our data also support the concept that PPARγ may be a novel therapeutic target for treating HD.


PLOS ONE | 2013

The critical role of protein arginine methyltransferase prmt8 in zebrafish embryonic and neural development is non-redundant with its paralogue prmt1.

Yu-ling Lin; Yun-Jung Tsai; Yu-Fang Liu; Yi-Chuan Cheng; Chuan-Mao Hung; Yi-Jen Lee; Huichin Pan; Chuan Li

Protein arginine methyltransferase (PRMT) 1 is the most conserved and widely distributed PRMT in eukaryotes. PRMT8 is a vertebrate-restricted paralogue of PRMT1 with an extra N-terminal sequence and brain-specific expression. We use zebrafish (Danio rerio) as a vertebrate model to study PRMT8 function and putative redundancy with PRMT1. The transcripts of zebrafish prmt8 were specifically expressed in adult zebrafish brain and ubiquitously expressed from zygotic to early segmentation stage before the neuronal development. Whole-mount in situ hybridization revealed ubiquitous prmt8 expression pattern during early embryonic stages, similar to that of prmt1. Knockdown of prmt8 with antisense morpholino oligonucleotide phenocopied prmt1-knockdown, with convergence/extension defects at gastrulation. Other abnormalities observed later include short body axis, curled tails, small and malformed brain and eyes. Catalytically inactive prmt8 failed to complement the morphants, indicating the importance of methyltransferase activity. Full-length prmt8 but not prmt1 cRNA can rescue the phenotypic changes. Nevertheless, cRNA encoding Prmt1 fused with the N-terminus of Prmt8 can rescue the prmt8 morphants. In contrast, N-terminus- deleted but not full-length prmt8 cRNA can rescue the prmt1 morphants as efficiently as prmt1 cRNA. Abnormal brain morphologies illustrated with brain markers and loss of fluorescent neurons in a transgenic fish upon prmt8 knockdown confirm the critical roles of prmt8 in neural development. In summery, our study is the first report showing the expression and function of prmt8 in early zebrafish embryogenesis. Our results indicate that prmt8 may play important roles non-overlapping with prmt1 in embryonic and neural development depending on its specific N-terminus.

Collaboration


Dive into the Yi-Chuan Cheng's collaboration.

Top Co-Authors

Avatar

Ming-Chang Chiang

Fu Jen Catholic University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kuan-Hung Lin

Chinese Culture University

View shared research outputs
Top Co-Authors

Avatar

Rong-Nan Huang

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge