Hunter E. Halverson
University of Iowa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hunter E. Halverson.
Behavioral Neuroscience | 2006
Hunter E. Halverson; John H. Freeman
The auditory conditioned stimulus (CS) pathway that is necessary for delay eyeblink conditioning was investigated with induced lesions of the medial auditory thalamus contralateral to the trained eye in rats. Rats were given unilateral lesions of the medial auditory thalamus or a control surgery followed by twenty 100-trial sessions of delay eyeblink conditioning with a tone CS and then five sessions of delay conditioning with a light CS. Rats that had complete lesions of the contralateral medial auditory thalamic nuclei, including the medial division of the medial geniculate, suprageniculate, and posterior intralaminar nucleus, showed a severe deficit in conditioning with the tone CS. Rats with complete lesions also showed no cross-modal facilitation (savings) when switched to the light CS. The medial auditory thalamic nuclei may modulate activity in a short-latency auditory CS pathway or serve as part of a longer latency auditory CS pathway that is necessary for eyeblink conditioning.
The Journal of Neuroscience | 2005
John H. Freeman; Hunter E. Halverson; Amy Poremba
The neural mechanisms underlying excitatory and inhibitory eyeblink conditioning were compared using muscimol inactivation of the cerebellum. In experiment 1, rats were given saline or muscimol infusions into the anterior interpositus nucleus ipsilateral to the conditioned eye before each of four daily excitatory conditioning sessions. Postinfusion testing continued for four more excitatory conditioning sessions. All rats were given a final test session after muscimol infusions. The muscimol infusions inactivated the cerebellar nuclei, lateral anterior lobe, crus I, rostral crus II, and lobule HVI ipsilateral to the conditioned eye. Acquisition of excitatory conditioning was completely prevented by muscimol inactivation. In experiment 2, there were four experimental phases. Phase 1 consisted of excitatory conditioning. In phase 2, rats were given saline or muscimol infusions before conditioned inhibition training. Phase 3 consisted of continued conditioned inhibition training with no drug infusions. In phase 4, all rats received a retardation test in which the inhibitory stimulus was paired with the unconditioned stimulus. Muscimol infusions blocked the expression of conditioned responses during phase 2. However, robust conditioned inhibition was evident in phases 3 and 4. The findings indicate that conditioned excitation and inhibition depend on different mechanisms.
Neurobiology of Learning and Memory | 2010
Hunter E. Halverson; John H. Freeman
Auditory and visual conditioned stimulus (CS) pathways for eyeblink conditioning were investigated with reversible inactivation of the medial (MPN) or lateral (LPN) pontine nuclei. In Experiment 1, Long-Evans rats were given three phases of eyeblink conditioning. Phase 1 consisted of three training sessions with electrical stimulation of the medial auditory thalamic nuclei (MATN) paired with a periorbital shock unconditioned stimulus (US). An additional session was given with a muscimol (0.5muL, 10mM) or saline infusion targeting the LPN followed by a recovery session with no infusions. The same training and testing sequence was then repeated with either a tone or light CS in phases 2 and 3 (counterbalanced). Experiment 2 consisted of the same training as Experiment 1 except that muscimol or saline was infused in the MPN during the retention tests. Muscimol infusions targeting the LPN severely impaired retention of eyeblink conditioned responses (CRs) to the MATN stimulation and tone CSs but only partially reduced CR percentage to the light CS. Muscimol infusions that targeted the MPN had a larger effect on CR retention to the light CS relative to MATN stimulation or tone CSs. The results provide evidence that the auditory CS pathway necessary for delay eyeblink conditioning includes the MATN-LPN projection and the visual CS pathway includes the MPN.
The Journal of Neuroscience | 2010
Hunter E. Halverson; Inah Lee; John H. Freeman
Eyeblink conditioning, a type of associative motor learning, requires the cerebellum. The medial auditory thalamus is a necessary source of stimulus input to the cerebellum during auditory eyeblink conditioning. Nothing is currently known about interactions between the thalamus and cerebellum during associative learning. In the current study, neuronal activity was recorded in the cerebellar interpositus nucleus and medial auditory thalamus simultaneously from multiple tetrodes during auditory eyeblink conditioning to examine the relative timing of learning-related plasticity within these interconnected areas. Learning-related changes in neuronal activity correlated with the eyeblink conditioned response were evident in the cerebellum before the medial auditory thalamus over the course of training and within conditioning trials, suggesting that thalamic plasticity may be driven by cerebellar feedback. Short-latency plasticity developed in the thalamus during the first conditioning session and may reflect attention to the conditioned stimulus. Extinction training resulted in a decrease in learning-related activity in both structures and an increase in inhibition within the cerebellum. A feedback projection from the cerebellar nuclei to the medial auditory thalamus was identified, which may play a role in learning by facilitating stimulus input to the cerebellum via the thalamo-pontine projection.
Learning & Memory | 2008
Hunter E. Halverson; Amy Poremba; John H. Freeman
The auditory conditioned stimulus (CS) pathway that is necessary for delay eyeblink conditioning was investigated using reversible inactivation of the medial auditory thalamic nuclei (MATN) consisting of the medial division of the medial geniculate (MGm), suprageniculate (SG), and posterior intralaminar nucleus (PIN). Rats were given saline or muscimol infusions into the MATN contralateral to the trained eye before each of four conditioning sessions with an auditory CS. Rats were then given four additional sessions without infusions to assess savings from the initial training. All rats were then given a retention test with a muscimol infusion followed by a recovery session. Muscimol infusions through cannula placements within 0.5 mm of the MGm prevented acquisition of eyeblink conditioned responses (CRs) and also blocked CR retention. Cannula placements more than 0.5 mm from the MATN did not completely block CR acquisition and had a partial effect on CR retention. The primary and secondary effects of MATN inactivation were examined with 2-deoxy-glucose (2-DG) autoradiography. Differences in 2-DG uptake in the auditory thalamus were consistent with the cannula placements and behavioral results. Differences in 2-DG uptake were found between groups in the ipsilateral auditory cortex, basilar pontine nuclei, and inferior colliculus. Results from this experiment indicate that the MATN contralateral to the trained eye and its projection to the pontine nuclei are necessary for acquisition and retention of eyeblink CRs to an auditory CS.
Brain Research | 2004
Ramon Lim; Asgar Zaheer; Houdy Khosravi; John H. Freeman; Hunter E. Halverson; John A. Wemmie; Baoli Yang
Glia maturation factor (GMF) is a unique brain protein localized in astrocytes and some neuronal populations. Studies with overexpression of GMF using adenovirus vector have uncovered its regulatory role in intracellular signal transduction and downstream induction of biologically active molecules, including the neurotrophins and cytokines. The current paper deals with the behavior of mice devoid of GMF protein (knockout). GMF-null mice developed normally without gross abnormality. When tested for simple position discrimination using a T-maze and for spatial memory using a Morris water maze, the knockout mice performed as well as the wild-type, showing no defect in maze learning. However, with beam walking, GMF-knockout mice performed poorly and failed to learn. Knockout mice were also defective in learning the eyeblink classical conditioning. Histologically, the knockout mice showed a loss of neurons in the inferior olive, which is a component of the circuitry of eyeblink conditioning, and is also essential for motor performance. The structural abnormality in GMF-null mice explained their impaired ability for both motor performance and motor learning.
The Journal of Neuroscience | 2015
Hunter E. Halverson; Andrei Khilkevich; Michael D. Mauk
How Purkinje cell (PC) activity may be altered by learning is central to theories of the cerebellum. Pavlovian eyelid conditioning, because of how directly it engages the cerebellum, has helped reveal many aspects of cerebellar learning and the underlying mechanisms. Theories of cerebellar learning assert that climbing fiber inputs control plasticity at synapses onto PCs, and thus PCs control the expression of learned responses. We tested this assertion by recording 184 eyelid PCs and 240 non-eyelid PCs during the expression of conditioned eyelid responses (CRs) in well trained rabbits. By contrasting the responses of eyelid and non-eyelid PCs and by contrasting the responses of eyelid PCs under conditions that produce differently timed CRs, we test the hypothesis that learning-related changes in eyelid PCs contribute to the learning and adaptive timing of the CRs. We used a variety of analyses to test the quantitative relationships between eyelid PC responses and the kinematic properties of the eyelid CRs. We find that the timing of eyelid PC responses varies systematically with the timing of the behavioral CRs and that there are differences in the magnitude of eyelid PC responses between larger-CR, smaller-CR, and non-CR trials. However, eyelid PC activity does not encode any single kinematic property of the behavioral CRs at a fixed time lag, nor does it linearly encode CR amplitude. Even so, the results are consistent with the hypothesis that learning-dependent changes in PC activity contribute to the adaptively timed expression of conditioned eyelid responses.
Learning & Memory | 2010
Hunter E. Halverson; John H. Freeman
The conditioned stimulus (CS) pathway that is necessary for visual delay eyeblink conditioning was investigated in the current study. Rats were initially given eyeblink conditioning with stimulation of the ventral nucleus of the lateral geniculate (LGNv) as the CS followed by conditioning with light and tone CSs in separate training phases. Muscimol was infused into the medial pontine nuclei (MPN) after each training phase to examine conditioned response (CR) retention to each CS. The spread of muscimol infusions targeting the MPN was examined with fluorescent muscimol. Muscimol infusions into the MPN resulted in a severe impairment in retention of CRs with the LGNv stimulation and light CSs. A less severe impairment was observed with the tone CS. The results suggest that CS information from the LGNv and light CSs is relayed to the cerebellum through the MPN. Retrograde tracing with fluoro-gold (FG) showed that the LGNv and nucleus of the optic tract have ipsilateral projections to the MPN. Unilateral inputs to the MPN from the LGNv and nucleus of the optic tract may be part of the visual CS pathway that is necessary for visual eyeblink conditioning.
Learning & Memory | 2009
Hunter E. Halverson; Erin M. Hubbard; John H. Freeman
The role of the cerebellum in eyeblink conditioning is well established. Less work has been done to identify the necessary conditioned stimulus (CS) pathways that project sensory information to the cerebellum. A possible visual CS pathway has been hypothesized that consists of parallel inputs to the pontine nuclei from the lateral geniculate nucleus (LGN), superior colliculus (SC), pretectal nuclei, and visual cortex (VCTX) as reported by Koutalidis and colleagues in an earlier paper. The following experiments examined whether electrical stimulation of neural structures in the putative visual CS pathway can serve as a sufficient CS for eyeblink conditioning in rats. Unilateral stimulation of the ventral LGN (Experiment 1), SC (Experiment 2), or VCTX (Experiment 3) was used as a CS paired with a periorbital shock unconditioned stimulus. Stimulation was delivered to the hemisphere contralateral to the conditioned eye. Rats in all experiments were given five 100-trial sessions of paired or unpaired eyeblink conditioning with the stimulation CS followed by three paired sessions with a light CS. Stimulation of each visual area when paired with the unconditioned stimulus supported acquisition of eyeblink conditioned responses (CRs) and substantial savings when switched to a light CS. The results provide evidence for a unilateral parallel visual CS pathway for eyeblink conditioning that includes the LGN, SC, and VCTX inputs to the pontine nuclei.
Learning & Memory | 2015
Hunter E. Halverson; Amy Poremba; John H. Freeman
Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning. However, the medial auditory thalamic nuclei (MATN), consisting of the medial division of the medial geniculate, suprageniculate, and posterior interlaminar nucleus have also been implicated as a critical auditory relay to the pontine nuclei for cerebellum-dependent motor learning. The MATN also conveys auditory information to the amygdala necessary for avoidance and fear conditioning. The current study used CN stimulation to increase activity in the pontine nuclei, relative to a tone stimulus, and possibly provide sufficient input to the cerebellum for acquisition or retention of eyeblink conditioning during MATN inactivation. Primary and secondary effects of CN stimulation and MATN inactivation were examined using 2-deoxy-glucose autoradiography. Stimulation of CN increased activity in the pontine nuclei, however, this increase was not sufficient for cerebellar learning during MATN inactivation. Results of the current experiment provide additional evidence indicating the MATN may be the critical auditory relay for many associative learning tasks.