Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where John A. Wemmie is active.

Publication


Featured researches published by John A. Wemmie.


Cell | 2004

Neuroprotection in Ischemia: Blocking Calcium-Permeable Acid-Sensing Ion Channels

Zhi-Gang Xiong; Xiao-Man Zhu; Xiang-Ping Chu; Manabu Minami; Jessica Hey; Wen-Li Wei; John F. MacDonald; John A. Wemmie; Margaret P. Price; Michael J. Welsh; Roger P. Simon

Ca2+ toxicity remains the central focus of ischemic brain injury. The mechanism by which toxic Ca2+ loading of cells occurs in the ischemic brain has become less clear as multiple human trials of glutamate antagonists have failed to show effective neuroprotection in stroke. Acidosis is a common feature of ischemia and is assumed to play a critical role in brain injury; however, the mechanism(s) remain ill defined. Here, we show that acidosis activates Ca2+ -permeable acid-sensing ion channels (ASICs), inducing glutamate receptor-independent, Ca2+ -dependent, neuronal injury inhibited by ASIC blockers. Cells lacking endogenous ASICs are resistant to acid injury, while transfection of Ca2+ -permeable ASIC1a establishes sensitivity. In focal ischemia, intracerebroventricular injection of ASIC1a blockers or knockout of the ASIC1a gene protects the brain from ischemic injury and does so more potently than glutamate antagonism. Thus, acidosis injures the brain via membrane receptor-based mechanisms with resultant toxicity of [Ca2+]i, disclosing new potential therapeutic targets for stroke.


Neuron | 2002

The Acid-Activated Ion Channel ASIC Contributes to Synaptic Plasticity, Learning, and Memory

John A. Wemmie; Jianguo Chen; Candice C. Askwith; Alesia M. Hruska-Hageman; Margaret P. Price; Brian C. Nolan; Patrick G. Yoder; Ejvis Lamani; Toshinori Hoshi; John H. Freeman; Michael J. Welsh

Many central neurons possess large acid-activated currents, yet their molecular identity is unknown. We found that eliminating the acid sensing ion channel (ASIC) abolished H(+)-gated currents in hippocampal neurons. Neuronal H(+)-gated currents and transient acidification are proposed to play a role in synaptic transmission. Investigating this possibility, we found ASIC in hippocampus, in synaptosomes, and in dendrites localized at synapses. Moreover, loss of ASIC impaired hippocampal long-term potentiation. ASIC null mice had reduced excitatory postsynaptic potentials and NMDA receptor activation during high-frequency stimulation. Consistent with these findings, null mice displayed defective spatial learning and eyeblink conditioning. These results identify ASIC as a key component of acid-activated currents and implicate these currents in processes underlying synaptic plasticity, learning, and memory.


Trends in Neurosciences | 2006

Acid-sensing ion channels: advances, questions and therapeutic opportunities

John A. Wemmie; Margaret P. Price; Michael J. Welsh

Extracellular acid can have important effects on neuron function. In central and peripheral neurons, acid-sensing ion channels (ASICs) have emerged as key receptors for extracellular protons, and recent studies suggest diverse roles for these channels in the pathophysiology of pain, ischemic stroke and psychiatric disease. ASICs have also been implicated in mechanosensation in the peripheral nervous system and in neurotransmission in the central nervous system. Here, we briefly review advances in our understanding of ASICs, their potential contributions to disease, and the possibility for their therapeutic modification.


Pain | 2003

Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1.

Kathleen A. Sluka; Margaret P. Price; Nicole M. Breese; Cheryl L. Stucky; John A. Wemmie; Michael J. Welsh

&NA; Clinically, chronic pain and hyperalgesia induced by muscle injury are disabling and difficult to treat. Cellular and molecular mechanisms underlying chronic muscle‐induced hyperalgesia are not well understood. For this reason, we developed an animal model where repeated injections of acidic saline into one gastrocnemius muscle produce bilateral, long‐lasting mechanical hypersensitivity of the paw (i.e. hyperalgesia) without associated tissue damage. Since acid sensing ion channels (ASICs) are found on primary afferent fibers and respond to decreases in pH, we tested the hypothesis that ASICs on primary afferent fibers innervating muscle are critical to development of hyperalgesia and central sensitization in response to repeated intramuscular acid. Dorsal root ganglion neurons innervating muscle express ASIC3 and respond to acidic pH with fast, transient inward and sustained currents that resemble those of ASICs. Mechanical hyperalgesia produced by repeated intramuscular acid injections is prevented by prior treatment of the muscle with the non‐selective ASIC antagonist, amiloride, suggesting ASICs might be involved. ASIC3 knockouts do not develop mechanical hyperalgesia to repeated intramuscular acid injection when compared to wildtype littermates. In contrast, ASIC1 knockouts develop hyperalgesia similar to their wildtype littermates. Extracellular recordings of spinal wide dynamic range (WDR) neurons from wildtype mice show an expansion of the receptive field to include the contralateral paw, an increased response to von Frey filaments applied to the paw both ipsilaterally and contralaterally, and increased response to noxious pinch contralaterally after the second intramuscular acid injection. These changes in WDR neurons do not occur in ASIC3 knockouts. Thus, activation of ASIC3s on muscle afferents is required for development of mechanical hyperalgesia and central sensitization that normally occurs in response to repeated intramuscular acid. Therefore, interfering with ASIC3 might be of benefit in treatment or prevention of chronic hyperalgesia.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons

Christopher J. Benson; Jinghui Xie; John A. Wemmie; Margaret P. Price; Jillian M. Henss; Michael Welsh; Peter M. Snyder

Acidic extracellular solution activates transient H+-gated currents in dorsal root ganglion (DRG) neurons. The biophysical properties of three degenerin/epithelial sodium (DEG/ENaC) channel subunits (BNC1, ASIC, and DRASIC), and their expression in DRG, suggest that they might underlie these H+-gated currents and function as sensory transducers. However, it is uncertain which of these DEG/ENaC subunits generate the currents, and whether they function as homomultimers or heteromultimers. We found that the biophysical properties of transient H+-gated currents from medium to large mouse DRG neurons differed from BNC1, ASIC, or DRASIC expressed individually, but were reproduced by coexpression of the subunits together. To test the contribution of each subunit, we studied DRG from three strains of mice, each bearing a targeted disruption of BNC1, ASIC, or DRASIC. Deletion of any one subunit did not abolish H+-gated currents, but altered currents in a manner consistent with heteromultimerization of the two remaining subunits. These data indicate that combinations of two or more DEG/ENaC subunits coassemble as heteromultimers to generate transient H+-gated currents in mouse DRG neurons.


Nature Medicine | 2007

Acid-sensing ion channel-1 contributes to axonal degeneration in autoimmune inflammation of the central nervous system

Manuel A. Friese; M Craner; Ruth Etzensperger; Sandra Vergo; John A. Wemmie; Michael J. Welsh; Angela Vincent; Lars Fugger

Multiple sclerosis is a neuroinflammatory disease associated with axonal degeneration. The neuronally expressed, proton-gated acid-sensing ion channel-1 (ASIC1) is permeable to Na+ and Ca2+, and excessive accumulation of these ions is associated with axonal degeneration. We tested the hypothesis that ASIC1 contributes to axonal degeneration in inflammatory lesions of the central nervous system (CNS). After induction of experimental autoimmune encephalomyelitis (EAE), Asic1−/− mice showed both a markedly reduced clinical deficit and reduced axonal degeneration compared to wild-type mice. Consistently with acidosis-mediated injury, pH measurements in the spinal cord of EAE mice showed tissue acidosis sufficient to open ASIC1. The acidosis-related protective effect of Asic1 disruption was also observed in nerve explants in vitro. Amiloride, a licensed and clinically safe blocker of ASICs, was equally neuroprotective in nerve explants and in EAE. Although ASICs are also expressed by immune cells, this expression is unlikely to explain the neuroprotective effect of Asic1 inactivation, as CNS inflammation was similar in wild-type and Asic1−/− mice. In addition, adoptive transfer of T cells from wild-type mice did not affect the protection mediated by Asic1 disruption. These results suggest that ASIC1 blockers could provide neuroprotection in multiple sclerosis.


Nature Reviews Neuroscience | 2013

Acid-sensing ion channels in pain and disease

John A. Wemmie; Rebecca J. Taugher; Collin J. Kreple

Why do neurons sense extracellular acid? In large part, this question has driven increasing investigation on acid-sensing ion channels (ASICs) in the CNS and the peripheral nervous system for the past two decades. Significant progress has been made in understanding the structure and function of ASICs at the molecular level. Studies aimed at clarifying their physiological importance have suggested roles for ASICs in pain, neurological and psychiatric disease. This Review highlights recent findings linking these channels to physiology and disease. In addition, it discusses some of the implications for therapy and points out questions that remain unanswered.


Cell | 2009

The amygdala is a chemosensor that detects carbon dioxide and acidosis to elicit fear behavior.

Adam E. Ziemann; Jason E. Allen; Nader S. Dahdaleh; Iuliia I. Drebot; Matthew W. Coryell; Amanda M. Wunsch; Cynthia M. Lynch; Frank M. Faraci; Matthew A. Howard; Michael J. Welsh; John A. Wemmie

The amygdala processes and directs inputs and outputs that are key to fear behavior. However, whether it directly senses fear-evoking stimuli is unknown. Because the amygdala expresses acid-sensing ion channel-1a (ASIC1a), and ASIC1a is required for normal fear responses, we hypothesized that the amygdala might detect a reduced pH. We found that inhaled CO(2) reduced brain pH and evoked fear behavior in mice. Eliminating or inhibiting ASIC1a markedly impaired this activity, and localized ASIC1a expression in the amygdala rescued the CO(2)-induced fear deficit of ASIC1a null animals. Buffering pH attenuated fear behavior, whereas directly reducing pH with amygdala microinjections reproduced the effect of CO(2). These data identify the amygdala as an important chemosensor that detects hypercarbia and acidosis and initiates behavioral responses. They also give a molecular explanation for how rising CO(2) concentrations elicit intense fear and provide a foundation for dissecting the bases of anxiety and panic disorders.


Nature Neuroscience | 2008

Seizure termination by acidosis depends on ASIC1a

Adam E. Ziemann; Mikael K. Schnizler; Gregory W. Albert; Meryl Severson; Matthew A. Howard; Michael J. Welsh; John A. Wemmie

Most seizures stop spontaneously; however, the molecular mechanisms that terminate seizures remain unknown. Observations that seizures reduced brain pH and that acidosis inhibited seizures indicate that acidosis halts epileptic activity. Because acid-sensing ion channel 1a (ASIC1a) is exquisitely sensitive to extracellular pH and regulates neuron excitability, we hypothesized that acidosis might activate ASIC1a, which would terminate seizures. Disrupting mouse ASIC1a increased the severity of chemoconvulsant-induced seizures, whereas overexpressing ASIC1a had the opposite effect. ASIC1a did not affect seizure threshold or onset, but shortened seizure duration and prevented seizure progression. CO2 inhalation, long known to lower brain pH and inhibit seizures, required ASIC1a to interrupt tonic-clonic seizures. Acidosis activated inhibitory interneurons through ASIC1a, suggesting that ASIC1a might limit seizures by increasing inhibitory tone. Our results identify ASIC1a as an important element in seizure termination when brain pH falls and suggest both a molecular mechanism for how the brain stops seizures and new therapeutic strategies.


Gut | 2005

Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function

Amanda J. Page; Stuart M. Brierley; Christopher M. Martin; Margaret P. Price; Erin L. Symonds; R Butler; John A. Wemmie; L A Blackshaw

Aims: Members of the acid sensing ion channel (ASIC) family are strong candidates as mechanical transducers in sensory function. The authors have shown that ASIC1a has no role in skin but a clear influence in gastrointestinal mechanotransduction. Here they investigate further ASIC1a in gut mechanoreceptors, and compare its influence with ASIC2 and ASIC3. Methods and results: Expression of ASIC1a, 2, and 3 mRNA was found in vagal (nodose) and dorsal root ganglia (DRG), and was lost in mice lacking the respective genes. Recordings of different classes of splanchnic colonic afferents and vagal gastro-oesophageal afferents revealed that disruption of ASIC1a increased the mechanical sensitivity of all afferents in both locations. Disruption of ASIC2 had varied effects: increased mechanosensitivity in gastro-oesophageal mucosal endings, decreases in gastro-oesophageal tension receptors, increases in colonic serosal endings, and no change in colonic mesenteric endings. In ASIC3-/- mice, all afferent classes had markedly reduced mechanosensitivity except gastro-oesophageal mucosal receptors. Observations of gastric emptying and faecal output confirmed that increases in mechanosensitivity translate to changes in digestive function in conscious animals. Conclusions: These data show that ASIC3 makes a critical positive contribution to mechanosensitivity in three out of four classes of visceral afferents. The presence of ASIC1a appears to provide an inhibitory contribution to the ion channel complex, whereas the role of ASIC2 differs widely across subclasses of afferents. These findings contrast sharply with the effects of ASIC1, 2, and 3 in skin, suggesting that targeting these subunits with pharmacological agents may have different and more pronounced effects on mechanosensitivity in the viscera.

Collaboration


Dive into the John A. Wemmie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margaret P. Price

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda M. Wunsch

Roy J. and Lucille A. Carver College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge