Huyue Song
China University of Geosciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Huyue Song.
Scientific Reports | 2015
Haijun Song; Paul B. Wignall; Daoliang Chu; Jinnan Tong; Yadong Sun; Huyue Song; Weihong He; Li Tian
The Permian-Triassic mass extinction was the most severe biotic crisis in the past 500 million years. Many hypotheses have been proposed to explain the crisis, but few account for the spectrum of extinction selectivity and subsequent recovery. Here we show that selective losses are best accounted for by a combination of lethally warm, shallow waters and anoxic deep waters that acted to severely restrict the habitable area to a narrow mid-water refuge zone. The relative tolerance of groups to this double whammy provides the first clear explanation for the selective extinction losses during this double-pulsed crisis and also the fitful recovery. Thus, high temperature intolerant shallow-water dwellers, such as corals, large foraminifers and radiolarians were eliminated first whilst high temperature tolerant ostracods thrived except in anoxic deeper-waters. In contrast, hypoxia tolerant but temperature intolerant small foraminifers were driven from shallow-waters but thrived on dysoxic slopes margins. Only those mollusc groups, which are tolerant of both hypoxia and high temperatures, were able to thrive in the immediate aftermath of the extinction. Limited Early Triassic benthic recovery was restricted to mid-water depths and coincided with intervals of cooling and deepening of water column anoxia that expanded the habitable mid-water refuge zone.
Science China-earth Sciences | 2012
Haijun Song; Jinnan Tong; YanLin Xiong; Dongying Sun; Li Tian; Huyue Song
Carbonate carbon isotope (δ13Ccarb) has received considerable attention in the Permian-Triassic transition for its rapid negative shift coinciding with the great end-Permian mass extinction event. The mechanism has long been debated for such a δ13Ccarb negative excursion through the end-Permian crisis and subsequent large perturbations in the entire Early Triassic. A δ13Ccarb-depth gradient is observed at the Permian-Triassic boundary sections of different water-depths, i.e., the Yangou, Meishan, and Shangsi sections, and such a large δ13Ccarb-depth gradient near the end-Permian mass extinction horizon is believed to result from a stratified Paleotethys Ocean with widespread anoxic/euxinic deep water. The evolution of δ13Ccarb-depth gradient combined with paleontological and geochemical data suggests that abundant cyanobacteria and vigorous biological pump in the immediate aftermath of the end-Permian extinction would be the main cause of the large δ13Ccarb-depth gradient, and the enhanced continental weathering with the mass extinction on land provides a mass amount of nutriment for the flourishing cyanobacteria. Photic zone anoxia/euxinia from the onset of chemocline upward excursion might be the direct cause for the mass extinction whereas the instability of chemocline in the stratified Early Triassic ocean would be the reason for the delayed and involuted biotic recovery.
Scientific Reports | 2015
Daoliang Chu; Jinnan Tong; Haijun Song; Michael J. Benton; David J. Bottjer; Huyue Song; Li Tian
Wrinkle structures in rocks younger than the Permian-Triassic (P-Tr) extinction have been reported repeatedly in marine strata, but rarely mentioned in rocks recording land. Here, three newly studied terrestrial P-Tr boundary rock succession in North China have yielded diverse wrinkle structures. All of these wrinkles are preserved in barely bioturbated shore-shallow lacustrine siliciclastic deposits of the Liujiagou Formation. Conversely, both the lacustrine siliciclastic deposits of the underlying Sunjiagou Formation and the overlying Heshanggou Formation show rich bioturbation, but no wrinkle structures or other microbial-related structures. The occurrence of terrestrial wrinkle structures in the studied sections reflects abnormal hydrochemical and physical environments, presumably associated with the extinction of terrestrial organisms. Only very rare trace fossils occurred in the aftermath of the P-Tr extinction, but most of them were preserved together with the microbial mats. This suggests that microbial mats acted as potential oases for the surviving aquatic animals, as a source of food and oxygen. The new finds suggests that extreme environmental stresses were prevalent both in the sea and on land through most of the Early Triassic.
Science China-earth Sciences | 2014
Li Tian; Jinnan Tong; DongYing Sun; YanLin Xiong; ChengGang Wang; Haijun Song; Huyue Song; Yunfei Huang
A Permian-Triassic (P-Tr) boundary section of continuous carbonate facies, which well recorded the biotic and environmental processes through the great P-Tr transition in the shallow non-microbialite carbonate facies, has been studied in Yangou, Leping County, Jiangxi Province. The P-Tr sequence is well correlated with the Meishan section according to the conodont biostratigraphy and the excursion of carbon isotopes. A series of high-resolution thin-sections from the P-Tr boundary carbonate rocks at the Yangou section are studied to explore the interrelation between environmental change and biological evolution during the transitional time. Six microfacies have been identified based upon the observation of the thin-sections under a microscope on the grains and matrix and their interrelation. Combined with the data of fossils and carbon isotopes, Microfacies 4 (MF-4), coated-grain-bearing foraminifer oolitic sparitic limestone, and Microfacies 6 (MF-6), dark shelly micritic limestone, should be the different responses to the two episodes of mass extinction and environmental events that can be correlated throughout South China and even over the world. The oolitic limestone of MF-4 is the first finding from the latest Permian strata in South China and it might be a proxy of an unusual environmental condition of high pCO2, low sulfate concentration and of microbial blooming in the aftermath of the latest Permian mass extinction. The micritic limestone of MF-6 containing rich micro-gastropods and ostracods probably represents the blooming event of disaster taxa in the earliest Triassic environment. The microfacies analysis at the Yangou section can well reveal the episodic process of the biological evolution and environmental change in the shallow non-microbialite carbonate facies throughout the great P-Tr transition, thus the Yangou section becomes an important complement to the Meishan section.
PALAIOS | 2015
Li Tian; David J. Bottjer; Jinnan Tong; Fei Li; Tinglu Yang; Haijun Song; Huyue Song; Lei Liang
Abstract The significant increase of abundance and expansion of depositional environments that produced unusual sediments in the Early Triassic indicates stressed ecosystems in the aftermath of the Permian–Triassic (P–Tr) mass extinction. As one of the characteristically common Early Triassic carbonate sediments, ooids provide a potential proxy to refine understanding of the biotic and environmental stresses during this time through analysis of their formation and size variations. A case study from South China and a global review are presented herein to explore the interrelations between occurrences of oolites and ooid size variations with biotic and environmental changes. Correlations between oolites and various biotic and environmental changes suggest a strong correspondence with episodes of euxinia/dysoxia but less so with skeleton abundance and temperature changes, implying complex interactions between multiple biotic and environmental anomalies in the aftermath of the P–Tr extinction. The episodic occurrence pattern of oolites from the end-Permian through the Early Triassic coincides with the multiple crises of the P–Tr mass extinction and its aftermath. The global increase in size of ooids during the early stage of the P–Tr mass extinction aftermath indicates the most severe and extensive conditions of devastation for ecosystems. The single occurrence of giant ooids in the Nanpanjiang Basin within the Olenekian implies local higher ecosystem stress than other areas. This analysis of ooid size variations and the paleoceanographic implications suggests that the size of ooids could be an appropriate quantified sedimentary proxy for ecosystem devastation with varied temporal and spatial ranges.
Journal of Earth Science | 2015
Li Tian; Jinnan Tong; David J. Bottjer; Daoliang Chu; Lei Liang; Huyue Song; Haijun Song
Various environmental changes were associated with the Permian-Triassic mass extinction at 252.2 Ma. Diverse unusual sediments and depositional phenomena have been uncovered as responses to environmental and biotic changes. Lithological and detailed conodont biostratigraphic correlations within six Permian-Triassic boundary sections in South China indicate rapid fluctuations in carbonate deposition. Four distinct depositional phases can be recognized: (1) normal carbonate deposition on the platform and slope during the latest Permian; (2) reduced carbonate deposition at the onset of the main extinction horizon; (3) expanded areas of carbonate deposition during the Hindeodus changxingsensis Zone to the H. parvus Zone; and (4) persistent mud-enriched carbonate deposition in the aftermath of the Permian-Triassic transition. Although availability of skeletal carbonate was significantly reduced during the mass extinction, the increase in carbonate deposition did not behave the same way. The rapid carbonate depositional changes, presented in this study, suggest that diverse environmental changes played key roles in the carbonate deposition of the Permian-Triassic mass extinction and onset of its aftermath. An overview of hypotheses to explain these changes implies enhanced terrestrial input, abnormal ocean circulation and various geobiological processes contributed to carbonate saturation fluctuations, as the sedimentary response to large volcanic eruptions.
Geological Magazine | 2016
Haijun Song; Jinnan Tong; Paul B. Wignall; Mao Luo; Li Tian; Huyue Song; Yunfei Huang; Daoliang Chu
Survival and recovery are important dynamic processes of biotic evolution during major geological transitions. Disaster and opportunistic taxa are two significant groups that dominate the ecosystem in the aftermath of mass extinction events. Disaster taxa appear immediately after such crises whilst opportunists pre-date the crisis but also bloom in the aftermath. This paper documents three disaster foraminiferal species and seven opportunistic foraminiferal species from Lower Triassic successions of South China. They are characterized by extreme high abundance and low diversity and occurred occasionally in Griesbachian, Smithian and Spathian strata. The characteristics (small size, simple morphology) and stratigraphic ranges of these groups suggest that r-selection is a commonly used strategy for survivors to cope with either harsh post-extinction conditions and/or environments lacking incumbents.
Science China-earth Sciences | 2014
Huyue Song; Jinnan Tong; Li Tian; Haijun Song; Haiou Qiu; Yuanyuan Zhu
Ocean anoxia has been widely implicated in the Permian-Triassic extinction. However, the duration and distribution of the ocean anoxia remains controversial. In this study, the detailed redox changes across the Permian-Triassic boundary (PTB) in the shallow platform interior at Great Bank of Guizhou (GBG) has been reconstructed based on the high-resolution microfossil composition and multiple paleo-redox proxies. The shallow platform is characterized by low sulfur (total sulfur (TS) and pyrite sulfur (Spy)) concentrations, low Spy/TOC ratios, and low DOP values before the mass extinction, representing oxic conditions well. Following the mass extinction, the shift of multiple geochemical proxies, including high Spy/TOC ratios and DOP values, indicates dysoxic-anoxic conditions in shallow ocean. Furthermore, we reconstruct the transition of the redox conditions of Nanpanjiang Basin: the intense volcanic eruptions, which release huge CO2 and SO2 before the mass extinction, provoke the temperature rising and the collapse of terrestrial ecosystem. As a result, the increased weathering influx causes the carbon isotopic negative excursion and the expansion of the ocean oxygen minimum zone (OMZ). When the OMZ expanded into the photic zone, the episodic H2S release events enhance the pyrite burial at Dajiang section. Thus, intense volcanic eruptions, temperature increase, and oceanic hypoxia together lead to the PTB extinction. Recent studies show high temperature might be the key mechanism of the PTB extinction. In addition, this study confirms that the microbialites were formed in the dysoxic-anoxic shallow water.
Nature Communications | 2017
Haijun Song; Ganqing Jiang; Simon W. Poulton; Paul B. Wignall; Jinnan Tong; Huyue Song; Zhihui An; Daoliang Chu; Li Tian; Zhenbing She; Chengshan Wang
Banded iron formations were a prevalent feature of marine sedimentation ~3.8–1.8 billion years ago and they provide key evidence for ferruginous oceans. The disappearance of banded iron formations at ~1.8 billion years ago was traditionally taken as evidence for the demise of ferruginous oceans, but recent geochemical studies show that ferruginous conditions persisted throughout the later Precambrian, and were even a feature of Phanerozoic ocean anoxic events. Here, to reconcile these observations, we track the evolution of oceanic Fe-concentrations by considering the temporal record of banded iron formations and marine red beds. We find that marine red beds are a prominent feature of the sedimentary record since the middle Ediacaran (~580 million years ago). Geochemical analyses and thermodynamic modelling reveal that marine red beds formed when deep-ocean Fe-concentrations were > 4 nM. By contrast, banded iron formations formed when Fe-concentrations were much higher (> 50 μM). Thus, the first widespread development of marine red beds constrains the timing of deep-ocean oxygenation.The evolution of oceanic redox state in the past is poorly known. Here, the authors present a temporal record of banded iron formations and marine red beds, which indicate deep-ocean oxygenation occurred in the middle Ediacaran, coinciding with the onset of widespread marine red beds.
Global and Planetary Change | 2013
Huyue Song; Jinnan Tong; Micha Horacek; Haiou Qiu; Haijun Song; Li Tian; Zhong-Qiang Chen