Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hwa Young Kim is active.

Publication


Featured researches published by Hwa Young Kim.


Journal of Biological Chemistry | 2009

MsrB1 (Methionine-R-sulfoxide Reductase 1) Knock-out Mice ROLES OF MsrB1 IN REDOX REGULATION AND IDENTIFICATION OF A NOVEL SELENOPROTEIN FORM

Dmitri E. Fomenko; Sergey V. Novoselov; Sathish Kumar Natarajan; Byung Cheon Lee; Ahmet Koc; Bradley A. Carlson; Tae Hyung Lee; Hwa Young Kim; Dolph L. Hatfield; Vadim N. Gladyshev

Protein oxidation has been linked to accelerated aging and is a contributing factor to many diseases. Methionine residues are particularly susceptible to oxidation, but the resulting mixture of methionine R-sulfoxide (Met-RO) and methionine S-sulfoxide (Met-SO) can be repaired by thioredoxin-dependent enzymes MsrB and MsrA, respectively. Here, we describe a knock-out mouse deficient in selenoprotein MsrB1, the main mammalian MsrB located in the cytosol and nucleus. In these mice, in addition to the deletion of 14-kDa MsrB1, a 5-kDa selenoprotein form was specifically removed. Further studies revealed that the 5-kDa protein occurred in both mouse tissues and human HEK 293 cells; was down-regulated by MsrB1 small interfering RNA, selenium deficiency, and selenocysteine tRNA mutations; and was immunoprecipitated and recognized by MsrB1 antibodies. Specific labeling with 75Se and mass spectrometry analyses revealed that the 5-kDa selenoprotein corresponded to the C-terminal sequence of MsrB1. The MsrB1 knock-out mice lacked both 5- and 14-kDa MsrB1 forms and showed reduced MsrB activity, with the strongest effect seen in liver and kidney. In addition, MsrA activity was decreased by MsrB1 deficiency. Liver and kidney of the MsrB1 knock-out mice also showed increased levels of malondialdehyde, protein carbonyls, protein methionine sulfoxide, and oxidized glutathione as well as reduced levels of free and protein thiols, whereas these parameters were little changed in other organs examined. Overall, this study established an important contribution of MsrB1 to the redox control in mouse liver and kidney and identified a novel form of this protein.


Journal of Biological Chemistry | 2016

Selenoprotein Gene Nomenclature

Brigelius Flohé Regina; Vadim N. Gladyshev; Elias S.J. Arnér; Marla J. Berry; Elspeth A. Bruford; Raymond F. Burk; Bradley A. Carlson; Sergi Castellano; Laurent Chavatte; Marcus Conrad; Paul R. Copeland; Alan M. Diamond; Donna M. Driscoll; A. Ferreiro; Leopold Flohé; Fiona R. Green; Roderic Guigó; Diane E. Handy; Dolph L. Hatfield; John E. Hesketh; Peter R. Hoffmann; Arne Holmgren; Robert J. Hondal; Michael T. Howard; Kaixun Huang; Hwa Young Kim; Ick Young Kim; Josef Köhrle; Alain Krol; Gregory V. Kryukov

The human genome contains 25 genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these functions: TXNRD1, TXNRD2, and TXNRD3 (thioredoxin reductases), GPX1, GPX2, GPX3, GPX4, and GPX6 (glutathione peroxidases), DIO1, DIO2, and DIO3 (iodothyronine deiodinases), MSRB1 (methionine sulfoxide reductase B1), and SEPHS2 (selenophosphate synthetase 2). Selenoproteins without known functions have traditionally been denoted by SEL or SEP symbols. However, these symbols are sometimes ambiguous and conflict with the approved nomenclature for several other genes. Therefore, there is a need to implement a rational and coherent nomenclature system for selenoprotein-encoding genes. Our solution is to use the root symbol SELENO followed by a letter. This nomenclature applies to SELENOF (selenoprotein F, the 15-kDa selenoprotein, SEP15), SELENOH (selenoprotein H, SELH, C11orf31), SELENOI (selenoprotein I, SELI, EPT1), SELENOK (selenoprotein K, SELK), SELENOM (selenoprotein M, SELM), SELENON (selenoprotein N, SEPN1, SELN), SELENOO (selenoprotein O, SELO), SELENOP (selenoprotein P, SeP, SEPP1, SELP), SELENOS (selenoprotein S, SELS, SEPS1, VIMP), SELENOT (selenoprotein T, SELT), SELENOV (selenoprotein V, SELV), and SELENOW (selenoprotein W, SELW, SEPW1). This system, approved by the HUGO Gene Nomenclature Committee, also resolves conflicting, missing, and ambiguous designations for selenoprotein genes and is applicable to selenoproteins across vertebrates.


Journal of Biological Chemistry | 2009

Functional Analysis of Free Methionine-R-sulfoxide Reductase from Saccharomyces cerevisiae

Dung Tien Le; Byung Cheon Lee; Stefano M. Marino; Yan Zhang; Dmitri E. Fomenko; Alaattin Kaya; Elise Hacioglu; Geun Hee Kwak; Ahmet Koc; Hwa Young Kim; Vadim N. Gladyshev

Methionine sulfoxide reductases (Msrs) are oxidoreductases that catalyze thiol-dependent reduction of oxidized methionines. MsrA and MsrB are the best known Msrs that repair methionine-S-sulfoxide (Met-S-SO) and methionine-R-sulfoxide (Met-R-SO) residues in proteins, respectively. In addition, an Escherichia coli enzyme specific for free Met-R-SO, designated fRMsr, was recently discovered. In this work, we carried out comparative genomic and experimental analyses to examine occurrence, evolution, and function of fRMsr. This protein is present in single copies and two mutually exclusive subtypes in about half of prokaryotes and unicellular eukaryotes but is missing in higher plants and animals. A Saccharomyces cerevisiae fRMsr homolog was found to reduce free Met-R-SO but not free Met-S-SO or dabsyl-Met-R-SO. fRMsr was responsible for growth of yeast cells on Met-R-SO, and the double fRMsr/MsrA mutant could not grow on a mixture of methionine sulfoxides. However, in the presence of methionine, even the triple fRMsr/MsrA/MsrB mutant was viable. In addition, fRMsr deletion strain showed an increased sensitivity to oxidative stress and a decreased life span, whereas overexpression of fRMsr conferred higher resistance to oxidants. Molecular modeling and cysteine residue targeting by thioredoxin pointed to Cys101 as catalytic and Cys125 as resolving residues in yeast fRMsr. These residues as well as a third Cys, resolving Cys91, clustered in the structure, and each was required for the catalytic activity of the enzyme. The data show that fRMsr is the main enzyme responsible for the reduction of free Met-R-SO in S. cerevisiae.


Molecular Microbiology | 2009

Structural and kinetic analysis of an MsrA-MsrB fusion protein from Streptococcus pneumoniae.

Young Kwan Kim; Youn Jae Shin; Wonho Lee; Hwa Young Kim; Kwang Yeon Hwang

Methionine sulphoxide reductases (Msr) catalyse the reduction of oxidized methionine to methionine. These enzymes are divided into two classes, MsrA and MsrB, according to substrate specificity. Although most MsrA and MsrB exist as separate enzymes, in some bacteria these two enzymes are fused to form a single polypeptide (MsrAB). Here, we report the first crystal structure of MsrAB from Streptococcus pneumoniae (SpMsrAB) at 2.4u2003Å resolution. SpMsrAB consists of an N‐terminal MsrA domain, a C‐terminal MsrB domain and a linker. The linker is composed of 13 residues and contains one 310‐helix and several hydrogen bonds interacting with both MsrA and MsrB domains. Interestingly, our structure includes the MsrB domain complexed with an SHMAEI hexa‐peptide that is the N‐terminal region of neighbouring MsrA domain. A kinetic analysis showed that the apparent Km of SpMsrAB for the R‐form‐substrate was 20‐fold lower than that for the S‐form substrate, indicating that the MsrB domain had a much higher affinity for the substrate than the MsrA domain. Our study reveals the first structure of the MsrAB by providing insights into the formation of a disulphide bridge in the MsrB, the structure of the linker region, and the distinct structural nature of active site of each MsrA and MsrB domain.


Biochemical and Biophysical Research Communications | 2012

Methionine sulfoxide reductase B in the endoplasmic reticulum is critical for stress resistance and aging in Drosophila.

Do Hwan Lim; Jee Yun Han; Jae Ryong Kim; Young Sik Lee; Hwa Young Kim

Methionine sulfoxide reductase B (MsrB) is an enzyme that repairs oxidatively damaged proteins by specifically reducing methionine-R-sulfoxide back to methionine. Three MsrBs, localized in different cellular compartments, are expressed in mammals. However, the physiological roles of each MsrB with regard to its location remain poorly understood. Here, we expressed endoplasmic reticulum (ER)-targeted human MsrB3A (hMsrB3A) in Drosophila and examined its effects on various phenotypes. In two independent transgenic lines, both ubiquitous and neuronal expression of hMsrB3A rendered flies resistant to oxidative stress. Interestingly, these flies also showed significantly enhanced cold and heat tolerance. More strikingly, expression of hMsrB3A in the whole body and nervous system extended the lifespan of fruit flies at 29 °C by 43-50% and 12-37%, respectively, suggesting that the targeted expression of MsrB in the ER regulates Drosophila lifespan. A significant increase in lifespan was also observed at 25 °C only when hMsrB3A was expressed in neurons. Additionally, hMsrB3A overexpression significantly delayed the age-related decline in locomotor activity and fecundity. Taken together, our data provide evidence that the ER type of MsrB, MsrB3A, plays an important role in protection mechanisms against oxidative, cold and heat stresses and, moreover, in the regulation of fruit fly aging.


Journal of Biological Chemistry | 2011

Analyses of fruit flies that do not express selenoproteins or express the mouse selenoprotein, methionine sulfoxide reductase B1, reveal a role of selenoproteins in stress resistance.

Valentina A. Shchedrina; Hadise Kabil; Gerd Vorbrüggen; Byung Cheon Lee; Anton A. Turanov; Mitsuko Hirosawa-Takamori; Hwa Young Kim; Lawrence G. Harshman; Dolph L. Hatfield; Vadim N. Gladyshev

Selenoproteins are essential in vertebrates because of their crucial role in cellular redox homeostasis, but some invertebrates that lack selenoproteins have recently been identified. Genetic disruption of selenoprotein biosynthesis had no effect on lifespan and oxidative stress resistance of Drosophila melanogaster. In the current study, fruit flies with knock-out of the selenocysteine-specific elongation factor were metabolically labeled with 75Se; they did not incorporate selenium into proteins and had the same lifespan on a chemically defined diet with or without selenium supplementation. These flies were, however, more susceptible to starvation than controls, and this effect could be ascribed to the function of selenoprotein K. We further expressed mouse methionine sulfoxide reductase B1 (MsrB1), a selenoenzyme that catalyzes the reduction of oxidized methionine residues and has protein repair function, in the whole body or the nervous system of fruit flies. This exogenous selenoprotein could only be expressed when the Drosophila selenocysteine insertion sequence element was used, whereas the corresponding mouse element did not support selenoprotein synthesis. Ectopic expression of MsrB1 in the nervous system led to an increase in the resistance against oxidative stress and starvation, but did not affect lifespan and reproduction, whereas ubiquitous MsrB1 expression had no effect. Dietary selenium did not influence lifespan of MsrB1-expressing flies. Thus, in contrast to vertebrates, fruit flies preserve only three selenoproteins, which are not essential and play a role only under certain stress conditions, thereby limiting the use of the micronutrient selenium by these organisms.


Mechanisms of Ageing and Development | 2009

Overexpression of methionine-R-sulfoxide reductases has no influence on fruit fly aging

Valentina A. Shchedrina; Gerd Vorbrüggen; Byung Cheon Lee; Hwa Young Kim; Hadise Kabil; Lawrence G. Harshman; Vadim N. Gladyshev

Methionine sulfoxide reductases (Msrs) are enzymes that repair oxidized methionine residues in proteins. This function implicated Msrs in antioxidant defense and the regulation of aging. There are two known Msr types in animals: MsrA specific for the reduction of methionine-S-sulfoxide, and MsrB that catalyzes the reduction of methionine-R-sulfoxide. In a previous study, overexpression of MsrA in the nervous system of Drosophila was found to extend lifespan by 70%. Overexpression of MsrA in yeast also extended lifespan, whereas MsrB overexpression did so only under calorie restriction conditions. The effect of MsrB overexpression on lifespan has not yet been characterized in animal model systems. Here, the GAL4-UAS binary system was used to drive overexpression of cytosolic Drosophila MsrB and mitochondrial mouse MsrB2 in whole body, fatbody, and the nervous system of flies. In contrast to MsrA, MsrB overexpression had no consistent effect on the lifespan of fruit flies on either corn meal or sugar yeast diets. Physical activity, fecundity, and stress resistance were also similar in MsrB-overexpressing and control flies. Thus, MsrA and MsrB, the two proteins with similar function in antioxidant protein repair, have different effects on aging in fruit flies.


Molecular Microbiology | 2011

Tandem use of selenocysteine: adaptation of a selenoprotein glutaredoxin for reduction of selenoprotein methionine sulfoxide reductase

Moon Jung Kim; Byung Cheon Lee; Jaeho Jeong; Kong Joo Lee; Kwang Yeon Hwang; Vadim N. Gladyshev; Hwa Young Kim

Several engineered selenocysteine (Sec)‐containing glutaredoxins (Grxs) and their enzymatic properties have been reported, but natural selenoprotein Grxs have not been previously characterized. We expressed a bacterial selenoprotein Grx from Clostridium sp. (also known as Alkaliphilus oremlandii) OhILAs in Escherichia coli and characterized this selenoenzyme and its natural Cys homologues in Clostridium and E. coli. The selenoprotein Grx had a 200‐fold higher activity than its Sec‐to‐Cys mutant form, suggesting that Sec is essential for catalysis by this thiol‐disulfide oxidoreductase. Kinetic analysis also showed that the selenoprotein Grx had a 10‐fold lower Km than Cys homologues. Interestingly, this selenoenzyme efficiently reduced a Clostridium selenoprotein methionine sulfoxide reductase A (MsrA), suggesting that it is the natural reductant for the protein that is not reducible by thioredoxin, a common reductant for Cys‐containing MsrAs. We also found that the selenoprotein Grx could not efficiently reduce a Cys version of Clostridium MsrA, whereas natural Clostridium and E. coli Cys‐containing Grxs, which efficiently reduce Cys‐containing MsrAs, poorly acted on the selenoprotein MsrA. This specificity for MsrA reduction could explain why Sec is utilized in Clostridium Grx and more generally provides a novel example of the use of Sec in biological systems.


Molecular Microbiology | 2011

Tandem use of selenocysteine

Moon Jung Kim; Byung Cheon Lee; Jaeho Jeong; Kong Joo Lee; Kwang Yeon Hwang; Vadim N. Gladyshev; Hwa Young Kim

Several engineered selenocysteine (Sec)‐containing glutaredoxins (Grxs) and their enzymatic properties have been reported, but natural selenoprotein Grxs have not been previously characterized. We expressed a bacterial selenoprotein Grx from Clostridium sp. (also known as Alkaliphilus oremlandii) OhILAs in Escherichia coli and characterized this selenoenzyme and its natural Cys homologues in Clostridium and E. coli. The selenoprotein Grx had a 200‐fold higher activity than its Sec‐to‐Cys mutant form, suggesting that Sec is essential for catalysis by this thiol‐disulfide oxidoreductase. Kinetic analysis also showed that the selenoprotein Grx had a 10‐fold lower Km than Cys homologues. Interestingly, this selenoenzyme efficiently reduced a Clostridium selenoprotein methionine sulfoxide reductase A (MsrA), suggesting that it is the natural reductant for the protein that is not reducible by thioredoxin, a common reductant for Cys‐containing MsrAs. We also found that the selenoprotein Grx could not efficiently reduce a Cys version of Clostridium MsrA, whereas natural Clostridium and E. coli Cys‐containing Grxs, which efficiently reduce Cys‐containing MsrAs, poorly acted on the selenoprotein MsrA. This specificity for MsrA reduction could explain why Sec is utilized in Clostridium Grx and more generally provides a novel example of the use of Sec in biological systems.


Journal of Biological Chemistry | 2010

Insights into Function, Catalytic Mechanism, and Fold Evolution of Selenoprotein Methionine Sulfoxide Reductase B1 through Structural Analysis

Finn L. Aachmann; Lena S. Sal; Hwa Young Kim; Stefano M. Marino; Vadim N. Gladyshev; Alexander Dikiy

Methionine sulfoxide reductases protect cells by repairing oxidatively damaged methionine residues in proteins. Here, we report the first three-dimensional structure of the mammalian selenoprotein methionine sulfoxide reductase B1 (MsrB1), determined by high resolution NMR spectroscopy. Heteronuclear multidimensional spectra yielded NMR spectral assignments for the reduced form of MsrB1 in which catalytic selenocysteine (Sec) was replaced with cysteine (Cys). MsrB1 consists of a central structured core of two β-sheets and a highly flexible, disordered N-terminal region. Analysis of pH dependence of NMR signals of catalytically relevant residues, comparison with the data for bacterial MsrBs, and NMR-based structural analysis of methionine sulfoxide (substrate) and methionine sulfone (inhibitor) binding to MsrB1 at the atomic level reveal a mechanism involving catalytic Sec95 and resolving Cys4 residues in catalysis. The MsrB1 structure differs from the structures of Cys-containing MsrBs in the use of distal selenenylsulfide, residues needed for catalysis, and the mode in which the active form of the enzyme is regenerated. In addition, this is the first structure of a eukaryotic zinc-containing MsrB, which highlights the structural role of this metal ion bound to four conserved Cys. We integrated this information into a structural model of evolution of MsrB superfamily.

Collaboration


Dive into the Hwa Young Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vadim N. Gladyshev

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dmitri E. Fomenko

University of Nebraska–Lincoln

View shared research outputs
Top Co-Authors

Avatar

Jaeho Jeong

Ewha Womans University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge