Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geun-Hee Kwak is active.

Publication


Featured researches published by Geun-Hee Kwak.


Journal of Biochemistry and Molecular Biology | 2010

Dimethyl sulfoxide elevates hydrogen peroxide-mediated cell death in Saccharomyces cerevisiae by inhibiting the antioxidant function of methionine sulfoxide reductase A.

Geun-Hee Kwak; Seung Hee Choi; Hwa-Young Kim

Dimethyl sulfoxide (DMSO) can be reduced to dimethyl sulfide by MsrA, which stereospecifically catalyzes the reduction of methionine-S-sulfoxide to methionine. Our previous study showed that DMSO can competitively inhibit methionine sulfoxide reduction ability of yeast and mammalian MsrA in both in vitro and in vivo, and also act as a non-competitive inhibitor for mammalian MsrB2, specific for the reduction of methionine-R-sulfoxide, with lower inhibition effects. The present study investigated the effects of DMSO on the physiological antioxidant functions of methionine sulfoxide reductases. DMSO elevated hydrogen peroxide-mediated Saccharomyces cerevisiae cell death, whereas it protected human SK-Hep1 cells against oxidative stress. DMSO reduced the protein-carbonyl content in yeast cells in normal conditions, but markedly increased protein-carbonyl accumulation under oxidative stress. Using Msr deletion mutant yeast cells, we demonstrated the DMSOs selective inhibition of the antioxidant function of MsrA in S. cerevisiae, resulting in an increase in oxidative stress-induced cytotoxicity.


Archives of Biochemistry and Biophysics | 2014

Methionine sulfoxide reductase B3 deficiency inhibits cell growth through the activation of p53-p21 and p27 pathways.

Eujin Lee; Geun-Hee Kwak; Kranti Kamble; Hwa-Young Kim

Methionine sulfoxide reductase B3 (MsrB3) is an oxidoreductase in the endoplasmic reticulum that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine. Here, we report the critical role and mechanisms of MsrB3 in cell proliferation. The deletion of MsrB3 led to a significant decrease in cell proliferation in mouse embryonic fibroblast (MEF) cells. MsrB3-knockout MEF cells showed increased p53 protein levels, compared to wild-type MEF cells, which subsequently elevated the protein level of cyclin-dependent kinase inhibitor p21. In addition, MsrB3 deficiency enhanced the protein level of p27, another cell cycle regulator, and caused cell cycle arrest at the G1 stage. The inhibitory effect of MsrB3 deficiency on cell proliferation through the activation of p53-p21 and p27 pathways was also confirmed in primary human dermal fibroblasts. Collectively, the data suggest that MsrB3 is a regulator of cell growth through the p53-p21 and p27 pathways.


Proteins | 2011

Structural and biochemical analysis of mammalian methionine sulfoxide reductase B2.

Finn L. Aachmann; Geun-Hee Kwak; Rebecca Del Conte; Hwa-Young Kim; Vadim N. Gladyshev; Alexander Dikiy

Methionine sulfoxide reductases are antioxidant enzymes that repair oxidatively damaged methionine residues in proteins. Mammals have three members of the methionine‐R‐sulfoxide reductase family, including cytosolic MsrB1, mitochondrial MsrB2, and endoplasmic reticulum MsrB3. Here, we report the solution structure of reduced Mus musculus MsrB2 using high resolution nuclear magnetic resonance (NMR) spectroscopy. MsrB2 is a β‐strand rich globular protein consisting of eight antiparallel β‐strands and three N‐terminal α‐helical segments. The latter secondary structure elements represent the main structural difference between mammalian MsrB2 and MsrB1. Structural comparison of mammalian and bacterial MsrB structures indicates that the general topology of this MsrB family is maintained and that MsrB2 more resembles bacterial MsrBs than MsrB1. Structural and biochemical analysis supports the catalytic mechanism of MsrB2 that, in contrast to MsrB1, does not involve a resolving cysteine (Cys). pH dependence of catalytically relevant residues in MsrB2 was accessed by NMR spectroscopy and the pKa of the catalytic Cys162 was determined to be 8.3. In addition, the pH‐dependence of MsrB2 activity showed a maximum at pH 9.0, suggesting that deprotonation of the catalytic Cys is a critical step for the reaction. Further mobility analysis showed a well‐structured N‐terminal region, which contrasted with the high flexibility of this region in MsrB1. Our study highlights important structural and functional aspects of mammalian MsrB2 and provides a unifying picture for structure‐function relationships within the MsrB protein family. Proteins 2011;


Biochemical and Biophysical Research Communications | 2010

Cysteine-125 is the catalytic residue of Saccharomyces cerevisiae free methionine-R-sulfoxide reductase

Geun-Hee Kwak; Moon-Jung Kim; Hwa-Young Kim

Free methionine-R-sulfoxide reductase (fRMsr) is a new type of methionine sulfoxide reductase that catalyzes the reduction of free methionine-R-sulfoxide to methionine. This enzyme cannot reduce oxidized methionine residues in proteins. While three Cys residues, Cys-91, Cys-101 and Cys-125, have been demonstrated to be involved in the catalysis by Saccharomyces cerevisiae fRMsr, their specific functions have not been fully established. In this work, we performed in vivo growth complementation experiments using S. cerevisiae cells lacking all three known methionine sulfoxide reductases. Cells containing a C125S construct, in which Cys-125 in fRMsr was replaced with Ser, did not grow in methionine sulfoxide medium, whereas cells containing C91S, C101S, or C91/101S constructs could grow in this medium. In addition, when assayed with thioredoxin and glutaredoxin reduction systems, the C125S form was inactive, whereas C91S and C101S had 1-2% and 9-10%, respectively, of the activity of the wild-type fRMsr. These data show that Cys-125 is the catalytic residue in fRMsr.


Biochemical and Biophysical Research Communications | 2016

Methionine sulfoxide reductase B3 deficiency stimulates heme oxygenase-1 expression via ROS-dependent and Nrf2 activation pathways

Geun-Hee Kwak; Ki Young Kim; Hwa-Young Kim

Methionine sulfoxide reductase B3 (MsrB3), which is primarily found in the endoplasmic reticulum (ER), is an important protein repair enzyme that stereospecifically reduces methionine-R-sulfoxide residues. We previously found that MsrB3 deficiency arrests the cell cycle at the G1/S stage through up-regulation of p21 and p27. In this study, we report a critical role of MsrB3 in gene expression of heme oxygenase-1 (HO-1), which has an anti-proliferative effect associated with p21 up-regulation. Depletion of MsrB3 elevated HO-1 expression in mammalian cells, whereas MsrB3 overexpression had no effect. MsrB3 deficiency increased cellular reactive oxygen species (ROS), particularly in the mitochondria. ER stress, which is associated with up-regulation of HO-1, was also induced by depletion of MsrB3. Treatment with N-acetylcysteine as an ROS scavenger reduced augmented HO-1 levels in MsrB3-depleted cells. MsrB3 deficiency activated Nrf2 transcription factor by enhancing its expression and nuclear import. The activation of Nrf2 induced by MsrB3 depletion was confirmed by increased expression levels of its other target genes, such as γ-glutamylcysteine ligase. Taken together, these data suggest that MsrB3 attenuates HO-1 induction by inhibiting ROS production, ER stress, and Nrf2 activation.


Biochemical and Biophysical Research Communications | 2017

Down-regulation of MsrB3 induces cancer cell apoptosis through reactive oxygen species production and intrinsic mitochondrial pathway activation

Geun-Hee Kwak; Tae-Hyoung Kim; Hwa-Young Kim

Methionine sulfoxide reductase B3 (MsrB3) is a protein repair enzyme that specifically catalyzes the reduction of methionine-R-sulfoxide residues and has an antioxidant function. We have previously shown that depletion of MsrB3 suppresses the proliferation of normal mammalian cells by arresting cell cycle. In this study, we report the crucial role of MsrB3 in cancer cell death. Deficiency of MsrB3 induced cancer cell death, while MsrB3 overexpression stimulated cancer cell proliferation. MsrB3 depletion resulted in apoptotic cancer cell death through the activation of the intrinsic mitochondrial pathway. MsrB3 deficiency increased the levels of cellular reactive oxygen species (ROS) and led to redox imbalance, and also increased the Bax to Bcl-2 ratio and cytochrome c release, leading to caspase activation. Treatment of MsrB3-depleted cells with N-acetylcysteine, an ROS scavenger, prevented cell death, suggesting that MsrB3 deficiency-induced cell death is associated with increased ROS production. In addition, MsrB3 depletion activated poly(ADP ribose) polymerase-1 (PARP-1) and led to the translocation of apoptosis-inducing factor (AIF) to the nucleus. Taken together, our results suggest that MsrB3 plays an important role in cancer cell survival through the modulation of the intrinsic apoptosis pathway.


Archives of Biochemistry and Biophysics | 2017

MsrB3 deficiency induces cancer cell apoptosis through p53-independent and ER stress-dependent pathways

Geun-Hee Kwak; Hwa-Young Kim

We have previously shown that down-regulation of methionine sulfoxide reductase B3 (MsrB3) induces cancer cell apoptosis through the activation of the intrinsic mitochondrial pathway. However, the mechanism through which MsrB3 deficiency results in cancer cell death is poorly understood. In this study, we investigated whether p53 and endoplasmic reticulum (ER) stress are involved in MsrB3 deficiency-induced cancer cell apoptosis using breast and colon cancer cells. MsrB3 depletion resulted in p53 down-regulation at the post-transcriptional level. MsrB3 deficiency induced cell death to a similar extent in both p53 wild-type (p53+/+) and null (p53-/-) cancer cells, suggesting that MsrB3 deficiency-induced apoptosis occurs independently of p53. MsrB3 deficiency significantly increased ER stress, which resulted in apoptosis. In addition, MsrB3 depletion activated the pro-apoptotic Bim molecule, which is essential for ER stress-induced apoptosis. MsrB3 deficiency increased cytosolic calcium levels, suggesting that MsrB3 down-regulation leads to a disturbance of calcium homeostasis in the ER, which consequently triggers ER stress. MsrB3 overexpression in MsrB3-depleted cells reduced ER stress, and was accompanied by at least partial recovery of cell viability. Taken together, our results suggest that MsrB3 plays a critical role in cancer cell apoptosis through the modulation of ER stress status.


Journal of Biochemistry and Molecular Biology | 2011

Identification of an antimicrobial peptide from human methionine sulfoxide reductase B3

Yongjoon Kim; Geun-Hee Kwak; ChuHee Lee; Hwa-Young Kim

Human methionine sulfoxide reductase B3A (hMsrB3A) is an endoplasmic reticulum (ER) reductase that catalyzes the stereospecific reduction of methionine-R-sulfoxide to methionine in proteins. In this work, we identified an antimicrobial peptide from hMsrB3A protein. The N-terminal ER-targeting signal peptide (amino acids 1-31) conferred an antimicrobial effect in Escherichia coli cells. Sequence and structural analyses showed that the overall positively charged ER signal peptide had an Argand Pro-rich region and a potential hydrophobic α-helical segment that contains 4 cysteine residues. The potential α-helical region was essential for the antimicrobial activity within E. coli cells. A synthetic peptide, comprised of 2-26 amino acids of the signal peptide, was effective at killing Gram-negative E. coli, Klebsiella pneumoniae, and Salmonella paratyphi, but had no bactericidal activity against Gram-positive Staphylococcus aureus.


Acta Biochimica et Biophysica Sinica | 2014

Over-expression of methionine sulfoxide reductase A in the endoplasmic reticulum increases resistance to oxidative and ER stresses

Jung-Yeon Kim; Yongjoon Kim; Geun-Hee Kwak; Su Young Oh; Hwa-Young Kim

MsrA and MsrB catalyze the reduction of methionine-S-sulfoxide and methionine-R-sulfoxide, respectively, to methionine in different cellular compartments of mammalian cells. One of the three MsrBs, MsrB3, is an endoplasmic reticulum (ER)-type enzyme critical for stress resistance including oxidative and ER stresses. However, there is no evidence for the presence of an ER-type MsrA or the ER localization of MsrA. In this work, we developed an ER-targeted recombinant MsrA construct and investigated the potential effects of methionine-S-sulfoxide reduction in the ER on stress resistance. The ER-targeted MsrA construct contained the N-terminal ER-targeting signal peptide of human MsrB3A (MSPRRSLPRPLSLCLSLCLCLCLAAALGSAQ) and the C-terminal ER-retention signal sequence (KAEL). The over-expression of ER-targeted MsrA significantly increased cellular resistance to H2O2-induced oxidative stress. The ER-targeted MsrA over-expression also significantly enhanced resistance to dithiothreitol-induced ER stress; however, it had no positive effects on the resistance to ER stresses induced by tunicamycin and thapsigargin. Collectively, our data suggest that methionine-S-sulfoxide reduction in the ER compartment plays a protective role against oxidative and ER stresses.


Archives of Biochemistry and Biophysics | 2017

Methionine sulfoxide reductase A protects against lipopolysaccharide-induced septic shock via negative regulation of the proinflammatory responses

Mahendra Pratap Singh; Ki Young Kim; Geun-Hee Kwak; Suk-Hwan Baek; Hwa-Young Kim

Methionine sulfoxide reductase A (MsrA) is a major antioxidant enzyme that specifically catalyzes the reduction of methionine S-sulfoxide. In this study, we used MsrA gene-knockout (MsrA-/-) mice and bone marrow-derived macrophages (BMDMs) to investigate the role of MsrA in the regulation of inflammatory responses induced by lipopolysaccharide (LPS). MsrA-/- mice were more susceptible to LPS-induced lethal shock than wild-type (MsrA+/+) mice. Serum levels of the proinflammatory cytokines IL-6 and TNF-α induced by LPS were higher in MsrA-/- than in MsrA+/+ mice. MsrA deficiency in the BMDMs also increased the LPS-induced cytotoxicity as well as TNF-α level. Basal and LPS-induced reactive oxygen species (ROS) levels were higher in MsrA-/- than in MsrA+/+ BMDMs. Phosphorylation levels of p38, JNK, and ERK were higher in MsrA-/- than in MsrA+/+ BMDMs in response to LPS, suggesting that MsrA deficiency increases MAPK activation. Furthermore, MsrA deficiency increased the expression and nuclear translocation of NF-κB and the expression of inducible nitric oxide synthase, a target gene of NF-κB, in response to LPS. Taken together, our results suggest that MsrA protects against LPS-induced septic shock, and negatively regulates proinflammatory responses via inhibition of the ROS-MAPK-NF-κB signaling pathways.

Collaboration


Dive into the Geun-Hee Kwak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mahendra Pratap Singh

Lovely Professional University

View shared research outputs
Top Co-Authors

Avatar

Vadim N. Gladyshev

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge