Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hwei Ling Cheng is active.

Publication


Featured researches published by Hwei Ling Cheng.


Cell | 2006

Genomic instability and aging-like phenotype in the absence of mammalian SIRT6

Raul Mostoslavsky; Katrin F. Chua; David B. Lombard; Wendy W. Pang; Miriam R. Fischer; Lionel Gellon; Pingfang Liu; Gustavo Mostoslavsky; Sonia Franco; Michael M. Murphy; Kevin D. Mills; Parin Patel; Joyce T. Hsu; Andrew L. Hong; Ethan Ford; Hwei Ling Cheng; Caitlin Kennedy; Nomeli P. Nunez; Roderick T. Bronson; David Frendewey; Wojtek Auerbach; David M. Valenzuela; Margaret Karow; Michael O. Hottiger; Stephen D. Hursting; J. Carl Barrett; Leonard Guarente; Richard C. Mulligan; Bruce Demple; George D. Yancopoulos

The Sir2 histone deacetylase functions as a chromatin silencer to regulate recombination, genomic stability, and aging in budding yeast. Seven mammalian Sir2 homologs have been identified (SIRT1-SIRT7), and it has been speculated that some may have similar functions to Sir2. Here, we demonstrate that SIRT6 is a nuclear, chromatin-associated protein that promotes resistance to DNA damage and suppresses genomic instability in mouse cells, in association with a role in base excision repair (BER). SIRT6-deficient mice are small and at 2-3 weeks of age develop abnormalities that include profound lymphopenia, loss of subcutaneous fat, lordokyphosis, and severe metabolic defects, eventually dying at about 4 weeks. We conclude that one function of SIRT6 is to promote normal DNA repair, and that SIRT6 loss leads to abnormalities in mice that overlap with aging-associated degenerative processes.


Molecular and Cellular Biology | 2007

Mammalian Sir2 Homolog SIRT3 Regulates Global Mitochondrial Lysine Acetylation

David B. Lombard; Frederick W. Alt; Hwei Ling Cheng; Jakob Bunkenborg; Ryan S. Streeper; Raul Mostoslavsky; Jennifer Kim; George D. Yancopoulos; David M. Valenzuela; Andrew J. Murphy; Yinhua Yang; Yaohui Chen; Matthew D. Hirschey; Roderick T. Bronson; Marcia C. Haigis; Leonard Guarente; Robert V. Farese; Sherman M. Weissman; Eric Verdin; Bjoern Schwer

ABSTRACT Homologs of the Saccharomyces cerevisiae Sir2 protein, sirtuins, promote longevity in many organisms. Studies of the sirtuin SIRT3 have so far been limited to cell culture systems. Here, we investigate the localization and function of SIRT3 in vivo. We show that endogenous mouse SIRT3 is a soluble mitochondrial protein. To address the function and relevance of SIRT3 in the regulation of energy metabolism, we generated and phenotypically characterized SIRT3 knockout mice. SIRT3-deficient animals exhibit striking mitochondrial protein hyperacetylation, suggesting that SIRT3 is a major mitochondrial deacetylase. In contrast, no mitochondrial hyperacetylation was detectable in mice lacking the two other mitochondrial sirtuins, SIRT4 and SIRT5. Surprisingly, despite this biochemical phenotype, SIRT3-deficient mice are metabolically unremarkable under basal conditions and show normal adaptive thermogenesis, a process previously suggested to involve SIRT3. Overall, our results extend the recent finding of lysine acetylation of mitochondrial proteins and demonstrate that SIRT3 has evolved to control reversible lysine acetylation in this organelle.


Nature | 1998

Late embryonic lethality and impaired V(D)J recombination in mice lacking DNA ligase IV

Karen M. Frank; JoAnn Sekiguchi; Katherine J. Seidl; Wojciech Swat; Gary Rathbun; Hwei Ling Cheng; Laurie Davidson; Landy Kangaloo; Frederick W. Alt

The DNA-end-joining reactions used for repair of double-strand breaks in DNA and for V (D)J recombination, the process by which immunoglobulin and T-cell antigen-receptor genes are assembled from multiple gene segments, use common factors. These factors include components of DNA-dependent protein kinase (DNA-PK), namely DNA-PKcs and the Ku heterodimer, Ku70–Ku80, and XRCC4 (ref. 1). The precise function of XRCC4 is unknown, but it interacts with DNA ligase IV. Ligase IV is one of the three known mammalian DNA ligases; however, the in vivo functions of these ligases have not been determined unequivocally. Here we show that inactivation of the ligase IV gene in mice leads to late embryonic lethality. Lymphopoiesis in these mice is blocked and V (D)J joining does not occur. Ligase IV-deficient embryonic fibroblasts also show marked sensitivity to ionizing radiation, growth defects and premature senescence. All of these phenotypic characteristics, except embryonic lethality, resemble those associated with Ku70 and Ku80 deficiencies, indicating that they may result from an impaired end-joining process that involves both Ku subunits and ligase IV. However, Ku-deficient mice are viable, so ligase IV must also be required for processes and/or in cell types in which Ku is dispensable.


Genes & Development | 2008

Tissue-specific regulation of SIRT1 by calorie restriction

Danica Chen; Joanne Bruno; Erin Easlon; Su Ju Lin; Hwei Ling Cheng; Frederick W. Alt; Leonard Guarente

Calorie restriction (CR) has been reported to increase SIRT1 protein levels in mice, rats, and humans, and elevated activity of SIRT1 orthologs extends life span in yeast, worms, and flies. In this study, we challenge the paradigm that CR induces SIRT1 activity in all tissues by showing that activity of this sirtuin in the liver is, in fact, reduced by CR and activated by a high-caloric diet. We demonstrate this change both by assaying levels of SIRT1 and its small molecule regulators, NAD and NADH, as well as assessing phenotypes of a liver-specific SIRT1 knockout mouse on various diets. Our findings suggest that designing CR mimetics that target SIRT1 to provide uniform systemic benefits may be more complex than currently imagined.


Immunity | 1997

Growth retardation and leaky SCID phenotype of Ku70-deficient mice

Yansong Gu; Katherine J. Seidl; Gary Rathbun; Chengming Zhu; John P. Manis; Nienke van der Stoep; Laurie Davidson; Hwei Ling Cheng; JoAnn Sekiguchi; Karen M. Frank; Patricia Stanhope-Baker; Mark S. Schlissel; David Roth; Frederick W. Alt

Ku70, Ku80, and DNA-PKcs are subunits of the DNA-dependent protein kinase (DNA-PK), an enzyme implicated in DNA double-stranded break repair and V(D)J recombination. Our Ku70-deficient mice were about 50% the size of control littermates, and their fibroblasts were ionizing radiation sensitive and displayed premature senescence associated with the accumulation of nondividing cells. Ku70-deficient mice lacked mature B cells or serum immunoglobulin but, unexpectedly, reproducibly developed small populations of thymic and peripheral alpha/beta T lineage cells and had a significant incidence of thymic lymphomas. In association with B and T cell developmental defects, Ku70-deficient cells were severely impaired for joining of V(D)J coding and recombination signal sequences. These unanticipated features of the Ku70-deficient phenotype with respect to lymphocyte development and V(D)J recombination may reflect differential functions of the three DNA-PK components.


Molecular and Cellular Biology | 2008

Mice Lacking Histone Deacetylase 6 Have Hyperacetylated Tubulin but Are Viable and Develop Normally

Yu Zhang; So Hee Kwon; Teppei Yamaguchi; Fabien Cubizolles; Sophie Rousseaux; Michaela Kneissel; Chun Cao; Na Li; Hwei Ling Cheng; Katrin F. Chua; David B. Lombard; Adam Mizeracki; Gabriele Matthias; Frederick W. Alt; Saadi Khochbin; Patrick Matthias

ABSTRACT Posttranslational modifications play important roles in regulating protein structure and function. Histone deacetylase 6 (HDAC6) is a mostly cytoplasmic class II HDAC, which has a unique structure with two catalytic domains and a domain binding ubiquitin with high affinity. This enzyme was recently identified as a multisubstrate protein deacetylase that can act on acetylated histone tails, α-tubulin and Hsp90. To investigate the in vivo functions of HDAC6 and the relevance of tubulin acetylation/deacetylation, we targeted the HDAC6 gene by homologous recombination in embryonic stem cells and generated knockout mice. HDAC6-deficient mice are viable and fertile and show hyperacetylated tubulin in most tissues. The highest level of expression of HDAC6 is seen in the testis, yet development and function of this organ are normal in the absence of HDAC6. Likewise, lymphoid development is normal, but the immune response is moderately affected. Furthermore, the lack of HDAC6 results in a small increase in cancellous bone mineral density, indicating that this deacetylase plays a minor role in bone biology. HDAC6-deficient mouse embryonic fibroblasts show apparently normal microtubule organization and stability and also show increased Hsp90 acetylation correlating with impaired Hsp90 function. Collectively, these data demonstrate that mice survive well without HDAC6 and that tubulin hyperacetylation is not detrimental to normal mammalian development.


Molecular Cell | 2002

Leaky Scid Phenotype Associated with Defective V(D)J Coding End Processing in Artemis-Deficient Mice

Sean Rooney; JoAnn Sekiguchi; Chengming Zhu; Hwei Ling Cheng; John P. Manis; Scott Whitlow; Jeff DeVido; Dan Foy; Jayanta Chaudhuri; David B. Lombard; Frederick W. Alt

Radiosensitive severe combined immune deficiency in humans results from mutations in Artemis, a protein which, when coupled with DNA-dependent protein kinase catalytic subunit (DNA-PKcs), possesses DNA hairpin-opening activity in vitro. Here, we report that Artemis-deficient mice have an overall phenotype similar to that of DNA-PKcs-deficient mice-including severe combined immunodeficiency associated with defects in opening and joining V(D)J coding hairpin ends and increased cellular ionizing radiation sensitivity. While these findings strongly support the notion that Artemis functions with DNA-PKcs in a subset of NHEJ functions, differences between Artemis- and DNA-PKcs-deficient phenotypes, most notably decreased fidelity of V(D)J signal sequence joining in DNA-PKcs-deficient but not Artemis-deficient fibroblasts, suggest additional functions for DNA-PKcs. Finally, Artemis deficiency leads to chromosomal instability in fibroblasts, demonstrating that Artemis functions as a genomic caretaker.


Molecular Cell | 2008

Lymphocyte-specific compensation for XLF/cernunnos end-joining functions in V(D)J recombination.

Gang Li; Frederick W. Alt; Hwei Ling Cheng; James W. Brush; Peter H. Goff; Michael M. Murphy; Sonia Franco; Yu Zhang; Shan Zha

Mutations in XLF/Cernunnos (XLF) cause lymphocytopenia in humans, and various studies suggest an XLF role in classical nonhomologous end joining (C-NHEJ). We now find that XLF-deficient mouse embryonic fibroblasts are ionizing radiation (IR) sensitive and severely impaired for ability to support V(D)J recombination. Yet mature lymphocyte numbers in XLF-deficient mice are only modestly decreased. Moreover, XLF-deficient pro-B lines, while IR-sensitive, perform V(D)J recombination at nearly wild-type levels. Correspondingly, XLF/p53-double-deficient mice are not markedly prone to the pro-B lymphomas that occur in previously characterized C-NHEJ/p53-deficient mice; however, like other C-NHEJ/p53-deficient mice, they still develop medulloblastomas. Despite nearly normal V(D)J recombination in developing B cells, XLF-deficient mature B cells are moderately defective for immunoglobulin heavy-chain class switch recombination. Together, our results implicate XLF as a C-NHEJ factor but also indicate that developing mouse lymphocytes harbor cell-type-specific factors/pathways that compensate for the absence of XLF function during V(D)J recombination.


Nature | 2012

The NAD-dependent deacetylase SIRT2 is required for programmed necrosis

Nisha Narayan; In Hye Lee; Ronen Borenstein; Junhui Sun; Renee Wong; Guang Tong; Maria M. Fergusson; Jie Liu; Ilsa I. Rovira; Hwei Ling Cheng; Guanghui Wang; Marjan Gucek; David B. Lombard; Fredrick W. Alt; Michael N. Sack; Elizabeth Murphy; Liu Cao; Toren Finkel

Although initially viewed as unregulated, increasing evidence suggests that cellular necrosis often proceeds through a specific molecular program. In particular, death ligands such as tumour necrosis factor (TNF)-α activate necrosis by stimulating the formation of a complex containing receptor-interacting protein 1 (RIP1) and receptor-interacting protein 3 (RIP3). Relatively little is known regarding how this complex formation is regulated. Here, we show that the NAD-dependent deacetylase SIRT2 binds constitutively to RIP3 and that deletion or knockdown of SIRT2 prevents formation of the RIP1–RIP3 complex in mice. Furthermore, genetic or pharmacological inhibition of SIRT2 blocks cellular necrosis induced by TNF-α. We further demonstrate that RIP1 is a critical target of SIRT2-dependent deacetylation. Using gain- and loss-of-function mutants, we demonstrate that acetylation of RIP1 lysine 530 modulates RIP1–RIP3 complex formation and TNF-α-stimulated necrosis. In the setting of ischaemia-reperfusion injury, RIP1 is deacetylated in a SIRT2-dependent fashion. Furthermore, the hearts of Sirt2−/− mice, or wild-type mice treated with a specific pharmacological inhibitor of SIRT2, show marked protection from ischaemic injury. Taken together, these results implicate SIRT2 as an important regulator of programmed necrosis and indicate that inhibitors of this deacetylase may constitute a novel approach to protect against necrotic injuries, including ischaemic stroke and myocardial infarction.


Molecular and Cellular Biology | 2011

The ARID Family Transcription Factor Bright Is Required for both Hematopoietic Stem Cell and B Lineage Development

Carol F. Webb; James Bryant; Melissa Popowski; Laura Allred; Dongkoon Kim; June V. Harriss; Christian Schmidt; Cathrine Miner; Kira Rose; Hwei Ling Cheng; Courtney Griffin; Philip W. Tucker

ABSTRACT Bright/Arid3a has been characterized both as an activator of immunoglobulin heavy-chain transcription and as a proto-oncogene. Although Bright expression is highly B lineage stage restricted in adult mice, its expression in the earliest identifiable hematopoietic stem cell (HSC) population suggests that Bright might have additional functions. We showed that >99% of Bright−/− embryos die at midgestation from failed hematopoiesis. Bright−/− embryonic day 12.5 (E12.5) fetal livers showed an increase in the expression of immature markers. Colony-forming assays indicated that the hematopoietic potential of Bright−/− mice is markedly reduced. Rare survivors of lethality, which were not compensated by the closely related paralogue Bright-derived protein (Bdp)/Arid3b, suffered HSC deficits in their bone marrow as well as B lineage-intrinsic developmental and functional deficiencies in their peripheries. These include a reduction in a natural antibody, B-1 responses to phosphocholine, and selective T-dependent impairment of IgG1 class switching. Our results place Bright/Arid3a on a select list of transcriptional regulators required to program both HSC and lineage-specific differentiation.

Collaboration


Dive into the Hwei Ling Cheng's collaboration.

Top Co-Authors

Avatar

Frederick W. Alt

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonard Guarente

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonia Franco

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Chengming Zhu

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge