Hye Ryung Jung
University of Southern Denmark
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hye Ryung Jung.
Nucleic Acids Research | 2010
Diego Pasini; Martina Malatesta; Hye Ryung Jung; Julian Walfridsson; Anton Willer; Linda Olsson; Julie Skotte; Anton Wutz; Bo T. Porse; Ole Nørregaard Jensen; Kristian Helin
Polycomb group (PcG) proteins are transcriptional repressors, which regulate proliferation and cell fate decisions during development, and their deregulated expression is a frequent event in human tumours. The Polycomb repressive complex 2 (PRC2) catalyzes trimethylation (me3) of histone H3 lysine 27 (K27), and it is believed that this activity mediates transcriptional repression. Despite the recent progress in understanding PcG function, the molecular mechanisms by which the PcG proteins repress transcription, as well as the mechanisms that lead to the activation of PcG target genes are poorly understood. To gain insight into these mechanisms, we have determined the global changes in histone modifications in embryonic stem (ES) cells lacking the PcG protein Suz12 that is essential for PRC2 activity. We show that loss of PRC2 activity results in a global increase in H3K27 acetylation. The methylation to acetylation switch correlates with the transcriptional activation of PcG target genes, both during ES cell differentiation and in MLL-AF9-transduced hematopoietic stem cells. Moreover, we provide evidence that the acetylation of H3K27 is catalyzed by the acetyltransferases p300 and CBP. Based on these data, we propose that the PcG proteins in part repress transcription by preventing the binding of acetyltransferases to PcG target genes.
Molecular & Cellular Proteomics | 2010
Hye Ryung Jung; Diego Pasini; Kristian Helin; Ole Nørregaard Jensen
SUZ12 is a core component of the polycomb repressive complex 2 (PRC2) and is required for the differentiation of mouse embryonic stem cells (ESCs). PRC2 is associated with transcriptional repression via methylation of H3 Lys-27. We applied quantitative mass spectrometry to investigate the effects of Suz12 deficiency on H3.2 and H3.3 from mouse ESCs. Using high mass accuracy MS combined with CID or electron transfer dissociation (ETD) tandem mass spectrometry, we identified a total of 81 unique modified peptides from H3.2 and H3.3 and assigned 46 modifications at 22 different positions, including distinct coexisting modifications. In certain cases, high mass accuracy LTQ-Orbitrap MS/MS allowed precise localization of near isobaric coexisting PTMs such as trimethylation and acetylation within individual peptides. ETD MS/MS facilitated sequencing and annotation of phosphorylated histone peptides. The combined use of ETD and CID MS/MS increased the total number of identified modified peptides. Comparative quantitative analysis of histones from wild type and Suz12-deficient ESCs using stable isotope labeling with amino acids in cell culture and LC-MS/MS revealed a dramatic reduction of H3K27me2 and H3K27me3 and an increase of H3K27ac, thereby uncovering an antagonistic methyl/acetyl switch at H3K27. The reduction in H3K27 methylation and increase in H3K27 acetylation was accompanied by H3K36 acetylation and methylation. Estimation of the global isoform percentage of unmodified and modified histone peptides (amino acids 27–40) showed the relative distribution of distinct coexisting histone marks. Our study revealed limitations of antibody-based Western blotting methods for detection of coexisting protein modifications and demonstrated the utility of quantitative tandem mass spectrometry for detailed analysis of the dynamics of coexisting post-translational modifications in proteins.
Molecular & Cellular Proteomics | 2010
Angel Manteca; Jesus Sanchez; Hye Ryung Jung; Veit Schwämmle; Ole Nørregaard Jensen
Streptomyces species produce many clinically important secondary metabolites, including antibiotics and antitumorals. They have a complex developmental cycle, including programmed cell death phenomena, that makes this bacterium a multicellular prokaryotic model. There are two differentiated mycelial stages: an early compartmentalized vegetative mycelium (first mycelium) and a multinucleated reproductive mycelium (second mycelium) arising after programmed cell death processes. In the present study, we made a detailed proteomics analysis of the distinct developmental stages of solid confluent Streptomyces coelicolor cultures using iTRAQ (isobaric tags for relative and absolute quantitation) labeling and LC-MS/MS. A new experimental approach was developed to obtain homogeneous samples at each developmental stage (temporal protein analysis) and also to obtain membrane and cytosolic protein fractions (spatial protein analysis). A total of 345 proteins were quantified in two biological replicates. Comparative bioinformatics analyses revealed the switch from primary to secondary metabolism between the initial compartmentalized mycelium and the multinucleated hyphae.
Journal of Proteome Research | 2010
Angel Manteca; Hye Ryung Jung; Veit Schwämmle; Ole Nørregaard Jensen; Jesus Sanchez
Streptomyces species produce many clinically important secondary metabolites and present a complex developmental cycle that includes programmed cell death (PCD) phenomena and sporulation. Industrial fermentations are usually performed in liquid cultures, conditions in which Streptomyces strains generally do not sporulate, and it was traditionally assumed that no differentiation took place. Recently, the existence of an early compartmentalized mycelium (MI) and a later multinucleated mycelium (MII) were described in solid and liquid cultures. The aim of this work was to compare the proteomes of the different developmental stages in liquid and solid S. coelicolor cultures, in order to give new insights in Streptomyces biology, and improve industrial fermentations. Using iTRAQ labeling and LC-MS/MS analysis of peptides, we demonstrate that differentiation in S. coelicolor liquid cultures is comparable to solid cultures. Eighty-three percent of all the identified proteins showed similar abundance values in MI and MII from liquid and solid cultures. Proteins involved in secondary metabolism (actinorhodin and type II polyketide biosynthesis, beta-lactamases, epimerases) were up-regulated in MII. Proteins involved in primary metabolism (ribosome, Krebs cycle, and energy production) were detected in greater abundance in MI. The most remarkable protein abundance differences between MII from solid and liquid cultures were associated with the final stages of hyphae compartmentalization and spore formation.
Omics A Journal of Integrative Biology | 2012
Keith Richardson; Richard Denny; Chris Hughes; John Skilling; Jacek Sikora; Michal Dadlez; Angel Manteca; Hye Ryung Jung; Ole Nørregaard Jensen; Virginie Redeker; Ronald Melki; James I. Langridge; Johannes P. C. Vissers
A probability-based quantification framework is presented for the calculation of relative peptide and protein abundance in label-free and label-dependent LC-MS proteomics data. The results are accompanied by credible intervals and regulation probabilities. The algorithm takes into account data uncertainties via Poisson statistics modified by a noise contribution that is determined automatically during an initial normalization stage. Protein quantification relies on assignments of component peptides to the acquired data. These assignments are generally of variable reliability and may not be present across all of the experiments comprising an analysis. It is also possible for a peptide to be identified to more than one protein in a given mixture. For these reasons the algorithm accepts a prior probability of peptide assignment for each intensity measurement. The model is constructed in such a way that outliers of any type can be automatically reweighted. Two discrete normalization methods can be employed. The first method is based on a user-defined subset of peptides, while the second method relies on the presence of a dominant background of endogenous peptides for which the concentration is assumed to be unaffected. Normalization is performed using the same computational and statistical procedures employed by the main quantification algorithm. The performance of the algorithm will be illustrated on example data sets, and its utility demonstrated for typical proteomics applications. The quantification algorithm supports relative protein quantification based on precursor and product ion intensities acquired by means of data-dependent methods, originating from all common isotopically-labeled approaches, as well as label-free ion intensity-based data-independent methods.
Journal of the American Society for Mass Spectrometry | 2011
Thomas Aarup Hansen; Hye Ryung Jung; Frank Kjeldsen
Interrogation of electron transfer dissociation (ETD) mass spectra of peptide amide-to-ester backbone bond substituted analogues (depsipeptides) reveals substantial differences in the entire backbone cleavage frequencies. It is suggested that the point permutation of backbone bonds leads to changes in the predominant ion structures by removal/weakening of specific hydrogen bonding. ETD responds to these changes by redistributing the cleavage frequencies of the peptide backbone bonds. In comparison, no distinction between depsi-/peptide was observed using collision-activated dissociation, which is consistent with a general unfolding and elimination of structural information of these ions. These results should encourage further exploration of depsipeptides for gas-phase structural characterization.
Drug Discovery Today: Technologies | 2006
Hye Ryung Jung; Ole Nørregaard Jensen
Glycosyl-phosphatidyl-inositol-anchored proteins (GPI-APs) represent a subset of post-translationally modified proteins that are tethered to the outer leaflet of the plasma membrane via a C-terminal GPI anchor. GPI-APs are found in a variety of eukaryote species, from pathogenic microorganisms to humans. GPI-APs confer important cellular functions as receptors, enzymes and scaffolding molecules. Specific enzymes and detergent extraction methods combined with separation technologies and mass spectrometry permit proteomic analysis of GPI-APs from plasma membrane preparations to reveal cell-type specific surface molecules, candidate biomarkers and potential therapeutic targets.:
Analytical Chemistry | 2013
Hye Ryung Jung; Simone Sidoli; Simon Nikolaj Haldbo; Richard R. Sprenger; Veit Schwämmle; Diego Pasini; Kristian Helin; Ole Nørregaard Jensen
Archive | 2010
Angel Manteca; Jesus Sanchez; Hye Ryung Jung; Veit Schwämmle; Ole Nørregaard; Southern Denmark; Angel Manteca Fernandez
Archive | 2010
Hye Ryung Jung; Diego Pasini; Kristian Helin