Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hye-Yeon Park is active.

Publication


Featured researches published by Hye-Yeon Park.


Analytical Chemistry | 2009

Protective Antigen Detection Using Horizontally Stacked Hexagonal ZnO Platelets

Hye-Yeon Park; Hwang-Yong Go; Satish Kalme; Rajaram S. Mane; Sung-Hwan Han; Moon-Young Yoon

Anthrax toxin detection before bacteremia, when toxin concentration is low, improves the chances of efficient treatment and cure. We present a novel technique for ultrasensitive detection of a protective antigen (PA(83)) of anthrax using an array of zinc oxide nanorods in conjunction with a FITC-labeled PA affinity peptide. The nanorods are composed of horizontally stacked hexagonal platelets which are uniformly spaced and grown unidirectionally upon a glass substrate via a new and simple technique. Images taken under UV emission demonstrate fluorescence sensitivity to PA as a function of antigen concentration, and a negative control using bovine serum albumin produced no fluorescence signal. The fluorescence signal of the PA-peptide complex is also significantly reduced in the absence of the nanorods, suggesting that the presence of ZnO nanorods inhibits the self-quenching properties of the fluorophore. A lower limit of detection for the assay system for PA is estimated at 150 aM, which demonstrates the possibility of using ZnO nanorods in biological sensor systems.


Journal of Mass Spectrometry | 2011

Disulfide bond cleavage in TEMPO-free radical initiated peptide sequencing mass spectrometry

Minhee Lee; Younjin Lee; Hye-Yeon Park; Yeonmi Seong; Bong June Sung; Bongjin Moon; Han Bin Oh

The gas-phase free radical initiated peptide sequencing (FRIPS) fragmentation behavior of o-TEMPO-Bz-conjugated peptides with an intra- and intermolecular disulfide bond was investigated using MS(n) tandem mass spectrometry experiments. Investigated peptides included four peptides with an intramolecular cyclic disulfide bond, Bactenecin (RLCRIVVIRVCR), TGF-α (CHSGYVGVRC), MCH (DFDMLRCMLGRVFRPCWQY) and Adrenomedullin (16-31) (CRFGTCTVQKLAHQIY), and two peptides with an intermolecular disulfide bond. Collisional activation of the benzyl radical conjugated peptide cation, which was generated through the release of a TEMPO radical from o-TEMPO-Bz-conjugated peptides upon initial collisional activation, produced a large number of peptide backbone fragments in which the S-S or C-S bond was readily cleaved. The observed peptide backbone fragments included a-, c-, x- or z-types, which indicates that the radical-driven peptide fragmentation mechanism plays an important role in TEMPO-FRIPS mass spectrometry. FRIPS application of the linearly linked disulfide peptides further showed that the S-S or C-S bond was selectively and preferentially cleaved, followed by peptide backbone dissociations. In the FRIPS mass spectra, the loss of •SH or •SSH was also abundantly found. On the basis of these findings, FRIPS fragmentation pathways for peptides with a disulfide bond are proposed. For the cleavage of the S-S bond, the abstraction of a hydrogen atom at C(β) by the benzyl radical is proposed to be the initial radical abstraction/transfer reaction. On the other hand, H-abstraction at C(α) is suggested to lead to C-S bond cleavage, which yields [ion ± S] fragments or the loss of •SH or •SSH.


Journal of Biomolecular Screening | 2011

Screening and Characterization of High-Affinity ssDNA Aptamers against Anthrax Protective Antigen

Ji Sun Choi; Sang Gon Kim; Mieke Lahousse; Hye-Yeon Park; Hae-Chul Park; Byeongmoon Jeong; Jinheung Kim; Sung-Kun Kim; Moon-Young Yoon

The protective antigen (PA) of Bacillus anthracis is a secreted protein that functions as a critical virulence factor. Protective antigen has been selected as a biomarker in detecting bacterial infection. The in vitro selection method, systematic evolution of ligands by exponential enrichment (SELEX), was used to find single-stranded DNAs that were tightly bound to PA. After 8 rounds of the SELEX process with PA, 4 different oligonucleotides (referred to as aptamers) that contain a 30-residue ssDNA sequence were identified. Dissociation constant (Kd) values with Cy3-attached aptamers were determined via fluorophotometry to be within a nanomolar range. The authors attempted to visualize the detection of PA using an aptamer-based enzyme-linked immunosorbent assay method, which has proven to be successful within a nanomolar Kd value range. Furthermore, 2 of the 4 aptamers exhibited specificity to PA against bovine serum albumin and bovine serum. The results of this study demonstrate the analytical potential of an oligonucleotide-based biosensor for a wide variety of applications, particularly in diagnosing disease through specific protein biomarkers.


Molecular Biotechnology | 2012

Screening of peptides bound to breast cancer stem cell specific surface marker CD44 by phage display.

Hye-Yeon Park; Kyoung-jin Lee; Su-Jae Lee; Moon-Young Yoon

CD44, a cancer-associated membrane glycoprotein involved in cell adhesion and tumor progression, has been implicated as a cancer stem cell antigen in several cancers including breast cancer. If the detection sensitivity of CD44 as an early marker for cancer could be improved, this would have important clinical applications. As compared with early stage treatments of other kinds of cancer, treatment of breast cancer is more likely to results in positive outcomes, so this early detection is crucial. Therefore, CD44 is a potential diagnostic target for cancer detection. Herein, we have used a peptide library to screen novel diverse peptides that bind to CD44 with high affinity and characterized the specific binding of these peptides. Our work provides a basis to develop novel diagnostic peptides which may replace antibodies as CD44 detection probes.


Analytical Chemistry | 2013

One-Step Peptide Backbone Dissociations in Negative-Ion Free Radical Initiated Peptide Sequencing Mass Spectrometry

Jihye Lee; Hye-Yeon Park; Hyuksu Kwon; Gyemin Kwon; Aeran Jeon; Hugh I. Kim; Bong June Sung; Bongjin Moon; Han Bin Oh

Peptide dissociation behavior in TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-based FRIPS (free radical initiated peptide sequencing) mass spectrometry was analyzed in both positive- and negative-ion modes for a number of peptides including angiotensin II, kinetensin, glycoprotein IIb fragment (296-306), des-Pro(2)-bradykinin, and ubiquitin tryptic fragment (43-48). In the positive mode, the ·Bz-C(O)-peptide radical species was produced exclusively at the initial collisional activation of o-TEMPO-Bz-C(O)-peptides, and two consecutive applications of collisional activation were needed to observe peptide backbone fragments. In contrast, in the negative-ion mode, a single application of collisional activation to o-TEMPO-Bz-C(O)-peptides produced extensive peptide backbone fragmentations as well as ·Bz-C(O)-peptide radical species. This result indicates that the duty cycle in the TEMPO-based FRIPS mass spectrometry can be reduced by one-half in the negative-ion mode. In addition, the fragment ions observed in the negative-ion experiments were mainly of the a-, c-, x-, and z-types, indicating that radical-driven tandem mass spectrometry was mainly responsible for the TEMPO-based FRIPS even with a single application of collisional activation. Furthermore, the survival fraction analysis of o-TEMPO-Bz-C(O)-peptides was made as a function of the applied normalized collision energy (NCE). This helped us to better understand the differences in FRIPS behavior between the positive- and negative-ion modes in terms of dissociation energetics. The duty-cycle improvement made in the present study provides a cornerstone for future research aiming to achieve a single-step FRIPS in the positive-ion mode.


Clinical and Experimental Immunology | 2009

5,7-dihydroxy-3,4,6-trimethoxyflavone inhibits the inflammatory effects induced by Bacteroides fragilis enterotoxin via dissociating the complex of heat shock protein 90 and IκBα and IκB kinase-γ in intestinal epithelial cell culture

Jung-Mogg Kim; D.H. Lee; J. Kim; Jin-Seok Lee; Hye-Yeon Park; Y.-J. Kim; Yu-Kyoung Oh; Hyun-Do Jung; Sunil Kim

Enterotoxin produced by enterotoxigenic Bacteroides fragilis (BFT) has been associated with mucosal inflammation and diarrhoeal diseases. In this study, the anti‐inflammatory molecular mechanism of 5,7‐dihydroxy‐3,4,6‐trimethoxyflavone (eupatilin) was characterized in an HT‐29 intestinal epithelial cell line stimulated with BFT. Pre‐treatment of HT‐29 cells with eupatilin decreased the production significantly of both interleukin (IL)‐8 and prostaglandin E2 induced by BFT in a dose‐dependent manner. BFT‐activated nuclear factor‐kappaB (NF‐κB) signals in HT‐29 cells and pretreatment with eupatilin suppressed NF‐κB activation that resulted in the significant inhibition of IL‐8 and cyclo‐oxygenase‐2 expression. BFT‐induced phosphorylation of both IκBα and IκB kinase (IKK) signals was prevented in eupatilin‐pretreated HT‐29 cells. Transfection of siRNA for IKK‐α and IKK‐β decreased the production of IL‐8 and prostaglandin E2; however, the transfection of IKK‐β siRNA showed a more significant reduction of BFT‐induced IκBα phosphorylation compared with that of IKK‐α siRNA. In addition, herbimycin A, a specific inhibitor of heat shock protein 90 (Hsp90), decreased the BFT‐induced activation of IKK and NF‐κB, suggesting that Hsp90 is associated with a pathway of IKK‐NF‐κB‐IL‐8/cyclo‐oxygenase‐2 gene signalling. Furthermore, eupatilin dissociated the complex between Hsp90 and IKK‐γ in BFT‐stimulated HT‐29 cells. These results suggest that eupatilin can suppress the NF‐κB signalling pathway by targeting the Hsp90‐IKK‐γ complex in intestinal epithelial cells and may attenuate BFT‐induced inflammatory responses.


Advanced Materials | 2011

Ultrasensitive Diagnosis for an Anthrax‐Protective Antigen Based on a Polyvalent Directed Peptide Polymer Coupled to Zinc Oxide Nanorods

Hye-Yeon Park; Vinayakumar Gedi; Joungmok Kim; Hae-Chul Park; Sung-Hwan Han; Moon-Young Yoon

A flexible poly-D-lysine polymer conjugated with different target-binding peptides is demonstrated with an ultralow concentration detection limit compared to those of other conventional detection systems. This polyvalent directed peptide polymer (PDPP) exhibits increased binding affinity and detects anthrax protective antigen at low levels using a well-known zinc oxide nanorod detection system.


Applied Microbiology and Biotechnology | 2009

Α-and β-tubulin from Phytophthora capsici KACC 40483 : molecular cloning, biochemical characterization, and antimicrotubule screening

Bon-Sung Koo; Hae-Chul Park; Satish Kalme; Hye-Yeon Park; Jin Wook Han; Yunsoo Yeo; Sang-Hong Yoon; Soo-Jin Kim; Chang-Muk Lee; Moon-Young Yoon

Internal fragments of α- and β-tubulin genes were generated using reverse transcription polymerase chain reaction (RT-PCR), and the termini were isolated using 5′- and 3′-rapid amplification of cDNA ends. Phytophthora capsici α- and β-tubulin specific primers were then used to generate full-length cDNA by RT-PCR. The recombinant α- and β-tubulin genes were expressed in Escherichia coli BL21 (DE3), purified under denaturing conditions, and average yields were 3.38–4.5xa0mg of α-tubulin and 2.89–4.0xa0mg of β-tubulin, each from 1-l culture. Optimum conditions were obtained for formation of microtubule-like structures. A value of 0.12xa0mg/ml was obtained as the critical concentration of polymerization of P. capsici tubulin. Benomyl inhibited polymerization with half-maximal inhibition (IC50)u2009=u2009468u2009±u200920xa0μM. Approximately 18.66u2009±u20090.13 cysteine residues per tubulin dimer were accessible to 5,5′-dithiobis-(2-nitrobenzoic acid), a quantification reagent of sulfhydryl and 12.43u2009±u20090.12 residues were accessible in the presence of 200xa0μM benomyl. The order of preference for accessibility to cysteines was benomyl > colchicine > GTP > taxol, and cysteine accessibility changes conformed that binding sites of these ligands in tubulin were folding correctly. Fluorescence resonance energy transfer technique was used for high throughput screening of chemical library in search of antimitotic agent. There was significant difference in relative fluorescence by 210-O-2 and 210-O-14 as compared to colchicine.


Biochimica et Biophysica Acta | 2010

Evaluation of substituted triazol-1-yl-pyrimidines as inhibitors of Bacillus anthracis acetohydroxyacid synthase.

Vinayakumar Gedi; Kumaresan Jayaraman; Satish Kalme; Hye-Yeon Park; Hae-Chul Park; Im-Joung La; Hoh-Gyu Hahn; Moon-Young Yoon

Acetohydroxyacid synthase (AHAS), a potential target for antimicrobial agents, catalyzes the first common step in the biosynthesis of the branched-chain amino acids. The genes of both catalytic and regulatory subunits of AHAS from Bacillus anthracis (Bantx), a causative agent of anthrax, were cloned, overexpressed in Escherichia coli, and purified to homogeneity. To develop novel anti-anthracis drugs that inhibit AHAS, a chemical library was screened, and four chemicals, AVS2087, AVS2093, AVS2387, and AVS2236, were identified as potent inhibitors of catalytic subunit with IC(50) values of 1.0 +/- 0.02, 1.0 +/- 0.04, 2.1 +/- 0.12, and 2.0 +/- 0.08 microM, respectively. Further, these four chemicals also showed strong inhibition against reconstituted AHAS with IC(50) values of 0.05 +/- 0.002, 0.153 +/- 0.004, 1.30 +/- 0.10, and 1.29 +/- 0.40 microM, respectively. The basic scaffold of the AVS group consists of 1-pyrimidine-2-yl-1H-[1,2,4]triazole-3-sulfonamide. The potent inhibitor, AVS2093 showed the lowest binding energy, -8.52 kcal/mol and formed a single hydrogen bond with a distance of 1.973 A. As the need for novel antibiotic classes to combat bacterial drug resistance increases, the screening of new compounds that act against Bantx-AHAS shows that AHAS is a good target for new anti-anthracis drugs.


Journal of Raman Spectroscopy | 2010

Use of peptide for selective and sensitive detection of an Anthrax biomarker via peptide recognition and surface-enhanced Raman scattering

Kyungtag Ryu; Amanda J. Haes; Hye-Yeon Park; Sanghee Nah; Joungmok Kim; Hoeil Chung; Moon-Young Yoon; Sung-Hwan Han

Collaboration


Dive into the Hye-Yeon Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge