Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hye-Yeong Kim is active.

Publication


Featured researches published by Hye-Yeong Kim.


Bioconjugate Chemistry | 2014

Discovery of hapten-specific scFv from a phage display library and applications for HER2-positive tumor imaging.

Hye-Yeong Kim; Xiaolei Wang; Brendon Wahlberg; W. Barry Edwards

In this study, an anti-hapten antibody (single chain Fv, scFv) against a hapten probe was developed as a unique reporter system for molecular imaging or therapy. The hapten peptide (histamine-succinyl-GSYK, Him) was synthesized for phage displayed scFv affinity selection and for conjugation with cypate (Cy-Him) for in vivo near-infrared (NIR) optical imaging. Hapten-specific scFvs were affinity selected from the human single fold phage display scFv libraries (Tomlinson I + J) with high specificity and affinity. Utilizing HER2 targeting as a model system, the highest affinity scFv (clone J42) was recombinantly fused to an anti-HER2 affibody (scFv-L-Aff) with no loss of affinity of either protein. The functionality of the hapten-scFv reporter system was tested in vitro with a HER2-positive human breast cancer cell line, SK-BR3, and in vivo with SK-BR3 xenografts. ScFv-L-Aff mediated the binding of the hapten to HER2 on SK-BR3 cells and from tissue from the SK-BR3 xenograft; however, scFv-L-Aff did not mediate uptake of the hapten in the SK-BR3 xenografted tumors, presumably due to rapid internalization of the HER2/scFv-L-Aff complex. Our results suggest that this hapten-peptide and anti-hapten scFv can be a universal reporter system in a wide range of imaging and therapeutic applications.


The Journal of Nuclear Medicine | 2017

Matrix Metalloproteinase–Targeted Imaging of Lung Inflammation and Remodeling

Reza Golestani; Mahmoud Razavian; Yunpeng Ye; Jiasheng Zhang; Jaejoon Jung; Jakub Toczek; Kiran Babu Gona; Hye-Yeong Kim; Jack A. Elias; Chun Geun Lee; Robert J. Homer; Mehran M. Sadeghi

Imaging techniques for detection of molecular and cellular processes that precede or accompany lung diseases are needed. Matrix metalloproteinases (MMPs) play key roles in the development of pulmonary pathology. The objective of this study was to investigate the feasibility of in vivo MMP-targeted molecular imaging for detection of lung inflammation and remodeling. Methods: Lung-specific IL-13 transgenic (Club cell 10-kDa protein [CC10]-IL-13 Tg) mice and wild-type littermates were used in this study. Lung structure, gene expression, and MMP activity were assessed by histology, real-time reverse transcription polymerase chain reaction, Western blotting, and zymography. MMP activation was imaged by in vivo small-animal SPECT/CT followed by ex vivo planar imaging. Signal specificity was addressed using a control tracer. The correlation between in vivo MMP signal and gene expression was addressed. Results: CC10-IL-13 Tg mice developed considerable pulmonary tissue remodeling and inflammation. CD68, MMP-12, and MMP-13 were significantly higher in CC10-IL-13 Tg lungs. On in vivo small-animal SPECT/CT and ex vivo planar images, the MMP signal was significantly higher in the lungs of CC10-IL-13 Tg mice than wild-type animals. Furthermore, a nonbinding analog tracer showed significantly lower accumulation in CC10-IL-13 Tg lungs relative to the specific tracer. There was a significant correlation between small-animal SPECT/CT–derived MMP signal and CD68 expression in the lungs (r = 0.70, P < 0.01). Conclusion: Small-animal SPECT/CT–based MMP-targeted imaging of the lungs is feasible and reflects pulmonary inflammation. If validated in humans, molecular imaging of inflammation and remodeling can potentially help early diagnosis and monitoring of the effects of therapeutic interventions in pulmonary diseases.


The Journal of Nuclear Medicine | 2017

Preclinical Evaluation of RYM1, a Matrix Metalloproteinase–Targeted Tracer for Imaging Aneurysm

Jakub Toczek; Yunpeng Ye; Kiran Babu Gona; Hye-Yeong Kim; Jinah Han; Mahmoud Razavian; Reza Golestani; Jiasheng Zhang; Terence L. Wu; Jaejoon Jung; Mehran M. Sadeghi

Matrix metalloproteinases (MMPs) play a key role in abdominal aortic aneurysm (AAA) development. Accordingly, MMP-targeted imaging provides important information regarding vessel wall biology in the course of aneurysm development. Given the small size of the vessel wall and its proximity with blood, molecular imaging of aneurysm optimally requires highly sensitive tracers with rapid blood clearance. To this end, we developed a novel hydrosoluble zwitterionic MMP inhibitor, RYM, on the basis of which a pan-MMP tracer, RYM1, was designed. Here, we describe the development and preclinical evaluation of RYM1 in comparison with RP805, a commonly used pan-MMP tracer in murine models of aneurysm. Methods: The macrocyclic hydroxamate-based pan-MMP inhibitor coupled with 6-hydrazinonicotinamide, RYM1, was synthesized and labeled with 99mTc. Radiochemical stability of 99mTc-RYM1 was evaluated by radio–high-performance liquid chromatography analysis. Tracer blood kinetics and biodistribution were compared with 99mTc-RP805 in C57BL/6J mice (n = 10). 99mTc-RYM1 binding to aneurysm and specificity were evaluated by quantitative autoradiography in apolipoprotein E–deficient (apoE−/−) mice with CaCl2-induced carotid aneurysm (n = 11). Angiotensin II–infused apoE−/− (n = 16) mice were used for small-animal SPECT/CT imaging. Aortic tissue MMP activity and macrophage marker CD68 expression were assessed by zymography and reverse-transcription polymerase chain reaction. Results: RYM1 showed nanomolar range inhibition constants for several MMPs. 99mTc-RYM1 was radiochemically stable in mouse blood for 5 h and demonstrated rapid renal clearance and lower blood levels in vivo compared with 99mTc-RP805. 99mTc-RYM1 binding to aneurysm and its specificity were shown by autoradiography in carotid aneurysm. Angiotensin II infusion in apoE−/− mice for 4 wk resulted in AAA formation in 36% (4/11) of surviving animals. In vivo 99mTc-RYM1 small-animal SPECT/CT images showed higher uptake of the tracer in AAA than nondilated aortae. Finally, aortic uptake of 99mTc-RYM1 in vivo correlated with aortic MMP activity and CD68 expression. Conclusion: The newly developed pan-MMP inhibitor–based tracer 99mTc-RYM1 displays favorable pharmacokinetics for early vascular imaging and enables specific detection of inflammation and MMP activity in aneurysm.


Scientific Reports | 2016

Matrix metalloproteinase inhibitor, doxycycline and progression of calcific aortic valve disease in hyperlipidemic mice.

Jaejoon Jung; Mahmoud Razavian; Hye-Yeong Kim; Yunpeng Ye; Reza Golestani; Jakub Toczek; Jiasheng Zhang; Mehran M. Sadeghi

Calcific aortic valve disease (CAVD) is the most common cause of aortic stenosis. Currently, there is no non-invasive medical therapy for CAVD. Matrix metalloproteinases (MMPs) are upregulated in CAVD and play a role in its pathogenesis. Here, we evaluated the effect of doxycycline, a nonselective MMP inhibitor on CAVD progression in the mouse. Apolipoprotein (apo)E−/− mice (n = 20) were fed a Western diet (WD) to induce CAVD. After 3 months, half of the animals was treated with doxycycline, while the others continued WD alone. After 6 months, we evaluated the effect of doxycycline on CAVD progression by echocardiography, MMP-targeted micro single photon emission computed tomography (SPECT)/computed tomography (CT), and tissue analysis. Despite therapeutic blood levels, doxycycline had no significant effect on MMP activation, aortic valve leaflet separation or flow velocity. This lack of effect on in vivo images was confirmed on tissue analysis which showed a similar level of aortic valve gelatinase activity, and inflammation between the two groups of animals. In conclusion, doxycycline (100 mg/kg/day) had no effect on CAVD progression in apoE−/− mice with early disease. Studies with more potent and specific inhibitors are needed to establish any potential role of MMP inhibition in CAVD development and progression.


Scientific Reports | 2016

Optical imaging of MMP-12 active form in inflammation and aneurysm

Mahmoud Razavian; Thomas Bordenave; Dimitris Georgiadis; Fabrice Beau; Jiasheng Zhang; Reza Golestani; Jakub Toczek; Jaejoon Jung; Yunpeng Ye; Hye-Yeong Kim; Jinah Han; Vincent Dive; Laurent Devel; Mehran M. Sadeghi

Matrix metalloproteinase (MMP)-12 plays a key role in the development of aneurysm. Like other members of MMP family, MMP-12 is produced as a proenzyme, mainly by macrophages, and undergoes proteolytic activation to generate an active form. Accordingly, molecular imaging of the MMP-12 active form can inform of the pathogenic process in aneurysm. Here, we developed a novel family of fluorescent probes based on a selective MMP-12 inhibitor, RXP470.1 to target the active form of MMP-12. These probes were stable in complex media and retained the high affinity and selectivity of RXP470.1 for MMP-12. Amongst these, probe 3 containing a zwitterionic fluorophore, ZW800-1, combined a favorable affinity profile toward MMP-12 and faster blood clearance. In vivo binding of probe 3 was observed in murine models of sterile inflammation and carotid aneurysm. Binding specificity was demonstrated using a non-binding homolog. Co-immunostaining localized MMP-12 probe binding to MMP-12 positive areas and F4/80 positive macrophages in aneurysm. In conclusion, the active form of MMP-12 can be detected by optical imaging using RXP470.1-based probes. This is a valuable adjunct for pathophysiology research, drug development, and potentially clinical applications.


Scientific Reports | 2018

Novel Arginine-containing Macrocyclic MMP Inhibitors: Synthesis, 99mTc-labeling, and Evaluation

Yunpeng Ye; Jakub Toczek; Kiran Babu Gona; Hye-Yeong Kim; Jinah Han; Mahmoud Razavian; Reza Golestani; Jiasheng Zhang; Terence L. Wu; Mousumi Ghosh; Jaejoon Jung; Mehran M. Sadeghi

Matrix metalloproteinases (MMPs) are involved in tissue remodeling. Accordingly, MMP inhibitors and related radiolabeled analogs are important tools for MMP-targeted imaging and therapy in a number of diseases. Herein, we report design, synthesis, and evaluation of a new Arginine-containing macrocyclic hydroxamate analog, RYM, its hydrazinonicotinamide conjugate, RYM1 and 99mTc-labeled analog 99mTc-RYM1 for molecular imaging. RYM exhibited potent inhibition against a panel of recombinant human (rh) MMPs in vitro. RYM1 was efficiently labeled with 99mTcO4− to give 99mTc-RYM1 in a high radiochemical yield and high radiochemical purity. RYM1 and its decayed labeling product displayed similar inhibition potencies against rhMMP-12. Furthermore, 99mTc-RYM1 exhibited specific binding with lung tissue from lung-specific interleukin-13 transgenic mice, in which MMP activity is increased in conjunction with tissue remodeling and inflammation. The results support further development of such new water-soluble Arginine-containing macrocyclic hydroxamate MMP inhibitors for targeted imaging and therapy.


PLOS ONE | 2018

RAGE-specific single chain Fv for PET imaging of pancreatic cancer

Hye-Yeong Kim; Xiaolei Wang; Rui Kang; Daolin Tang; Brian A. Boone; Herbert J. Zeh; Michael T. Lotze; W. Barry Edwards

Noninvasive detection of both early pancreatic neoplasia and metastases could enhance strategies to improve patient survival in this disease that is notorious for an extremely poor prognosis. There are almost no identifiable targets for non-invasive diagnosis by positron emission tomography (PET) for patients with pancreatic ductal adenocarcinoma (PDAC). Over-expression of the receptor for advanced glycation end products (RAGE) is found on the cell surface of both pre-neoplastic lesions and invasive PDAC. Here, a RAGE-specific single chain (scFv) was developed, specific for PET imaging in syngeneic mouse models of PDAC. An anti-RAGE scFv conjugated with a sulfo-Cy5 fluorescence molecule showed high affinity and selectivity for RAGE expressing pancreatic tumor cells and genetically engineered KRASG12D mouse models of PDAC. An in vivo biodistribution study was performed with the 64Cu-radiolabled scFv in a syngeneic murine pancreatic cancer model, demonstrating both the feasibility and potential of an anti-RAGE scFv for detection of PDAC. These studies hold great promise for translation into the clinic.


Cellular and Molecular Bioengineering | 2014

αVβ3 Integrin Regulation of Respiratory Burst in Fibrinogen Adherent Human Neutrophils

Hye-Yeong Kim; Eleni A. Skokos; Deborah J. Myer; Perez Agaba; Anjelica L. Gonzalez


Biochemistry and biophysics reports | 2015

Selection and characterization of high affinity VEGFR1 antibodies from a novel human binary code scFv phage library

Xiaolei Wang; Hye-Yeong Kim; Brendon Wahlberg; W. Barry Edwards


The Journal of Nuclear Medicine | 2016

An improved hydroxamate-based matrix metalloproteinase targeting tracer for aneurysm imaging

Jakub Toczek; Yunpeng Ye; Jiasheng Zhang; Mahmoud Razavian; Reza Golestani; Jaejoon Jung; Hye-Yeong Kim; Mehran M. Sadeghi

Collaboration


Dive into the Hye-Yeong Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaolei Wang

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge