Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyeon-Joong Kim is active.

Publication


Featured researches published by Hyeon-Joong Kim.


Molecules and Cells | 2012

Gintonin, Newly Identified Compounds from Ginseng, Is Novel Lysophosphatidic Acids-Protein Complexes and Activates G Protein-Coupled Lysophosphatidic Acid Receptors with High Affinity

Sung Hee Hwang; Tae-Joon Shin; Sun-Hye Choi; Hee-Jung Cho; Byung-Hwan Lee; Mi Kyung Pyo; Jun-Ho Lee; Jiyeon Kang; Hyeon-Joong Kim; Chan-Woo Park; Ho-Chul Shin; Seung-Yeol Nah

Recently, we isolated a subset of glycolipoproteins from Panax ginseng, that we designated gintonin, and demonstrated that it induced [Ca2+]i transients in cells via G-protein-coupled receptor (GPCR) signaling pathway(s). However, active components responsible for Ca2+ mobilization and the corresponding receptor(s) were unknown. Active component(s) for [Ca2+]i transients of gintonin were analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry and ion-mobility mass spectrometry, respectively. The corresponding receptor(s) were investigated through gene expression assays. We found that gintonin contains LPA C18:2 and other LPAs. Proteomic analysis showed that ginseng major latex-like protein and ribonuclease-like storage proteins are protein components of gintonin. Gintonin induced [Ca2+]i transients in B103 rat neuroblastoma cells transfected with human LPA receptors with high affinity in order of LPA2 > LPA5 > LPA1 > LPA3 > LPA4. The LPA1/LPA3 receptor antagonist Ki16425 blocked gintonin action in cells expressing LPA1 or LPA3. Mutations of binding sites in the LPA3 receptor attenuated gintonin action. Gintonin acted via pertussis toxin (PTX)-sensitive and -insensitive G protein-phospholipase C (PLC)-inositol 1,4,5-trisphosphate (IP3)-Ca2+ pathways. However, gintonin had no effects on other receptors examined. In human umbilical vein endothelial cells (HUVECs) gintonin stimulated cell proliferation and migration. Gintonin stimulated ERK1/2 phosphorylation. PTX blocked gintonin-mediated migration and ERK1/2 phosphorylation. In PC12 cells gintonin induced morphological changes, which were blocked by Rho kinase inhibitor Y-27632. Gintonin contains GPCR ligand LPAs in complexes with ginseng proteins and could be useful in the development of drugs targeting LPA receptors.


Journal of Alzheimer's Disease | 2012

Gintonin, a Ginseng-Derived Lysophosphatidic Acid Receptor Ligand, Attenuates Alzheimer's Disease-Related Neuropathies: Involvement of Non-Amyloidogenic Processing

Sung Hee Hwang; Eun-Joo Shin; Tae-Joon Shin; Byung-Hwan Lee; Sun-Hye Choi; Jiyeon Kang; Hyeon-Joong Kim; Seung-Hwan Kwon; Choon-Gon Jang; Jun-Ho Lee; Hyoung-Chun Kim; Seung-Yeol Nah

Ginseng extracts show cognition-enhancing effects in Alzheimers disease (AD) patients. However, little is known about the active components and molecular mechanisms of how ginseng exerts its effects. Recently, we isolated a novel lysophosphatidic acid (LPA) receptor-activating ligand from ginseng, gintonin. AD is caused by amyloid-β protein (Aβ) accumulation. Aβ is derived from amyloid-β protein precursors (AβPPs) through the amyloidogenic pathway. In contrast, non-amyloidogenic pathways produce beneficial, soluble AβPPα (sAβPPα). Here, we describe our investigations of the effect of gintonin on sAβPPα release, Aβ formation, Swedish-AβPP transfection-mediated neurotoxicity in SH-SY5Y neuroblastoma cells, and Aβ-induced neuropathy in mice. Gintonin promoted sAβPPα release in a concentration- and time-dependent manner. Gintonin action was also blocked by the Ca2+ chelator BAPTA, α-secretase inhibitor TAPI-2, and protein-trafficking inhibitor brefeldin. Gintonin decreased Aβ1-42 release and attenuated Aβ1-40-induced cytotoxicity in SH-SY5Y cells. Gintonin also rescued Aβ1-40-induced cognitive dysfunction in mice. Moreover, in a transgenic mouse AD model, long-term oral administration of gintonin attenuated amyloid plaque deposition as well as short- and long-term memory impairment. In the present study, we demonstrated that gintonin mediated the promotion of non-amyloidogenic processing to stimulate sAβPPα release to restore brain function in mice with AD. Gintonin could be a useful agent for AD prevention or therapy.


Journal of Ginseng Research | 2011

A simple method for the preparation of crude gintonin from ginseng root, stem, and leaf.

Mi Kyung Pyo; Sun-Hye Choi; Tae-Joon Shin; Sung Hee Hwang; Byung-Hwan Lee; Jiyeon Kang; Hyeon-Joong Kim; Soo-Han Lee; Seung-Yeol Nah

Ginseng has been used as a general tonic agent to invigorate the human body as an adaptogenic agent. In a previous report, we have shown that ginseng contains a novel glycolipoprotein called gintonin. The main function of gintonin is to transiently enhance intracellular free Ca2+ [Ca2+]i levels in animal cells. The previous method for gintonin isolation included multiple steps using organic solvents. In the present report, we developed a simple method for the preparation of crude gintonin from ginseng root as well as stem and leaf, which produced a higher yield of gintonin than the previous one. The yield of gintonin was 0.20%, 0.29%, and 0.81% from ginseng root, stem, and leaf, respectively. The apparent molecular weight of gintonin isolated from stem and leaf through sodium dodecyl sulfate polyacrylamide gel electrophoresis was almost same as that from root but the compositions of amino acids, carbohydrates or lipids differed slightly between them. We also examined the effects of crude gintonin from ginseng root, stem, and leaf on endogenous Ca2+-activated Cl- channel (CaCC) activity of Xenopus oocytes through mobilization of [Ca2+]i. We found that the order of potency for the activation of CaCC was ginseng root > stem > leaf. The ED50 was 1.4±1.4, 4.5±5.9, and 3.9±1.1 μg/mL for root, stem and leaf, respectively. In the present study, we demonstrated for the first time that in addition to ginseng root, ginseng stem and leaf also contain gintonin. Gintonin can be prepared from a simple method with higher yield of gintonin from ginseng root, stem, and leaf. Finally, these results demonstrate the possibility that ginseng stem and leaf could also be utilized for ginstonin preparation after a simple procedure, rather than being discarded.


Journal of Ginseng Research | 2011

Effects of Minor Ginsenosides, Ginsenoside Metabolites, and Ginsenoside Epimers on the Growth of Caenorhabditis elegans

Joon-Hee Lee; Jiyun Ahn; Tae-Joon Shin; Sun-Hye Choi; Byung-Hwan Lee; Sung-Hee Hwang; Jiyeon Kang; Hyeon-Joong Kim; Chan-Woo Park; Seung-Yeol Nah

In the previous report, we have demonstrated that ginsenoside Rc, one of major ginsenosides, is a major component for the restoration for normal growth of worms in cholesterol-deprived medium. In the present study, we further investigated the roles of minor ginsenosides, such as ginsenoside Rh1 and Rh2, ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) and ginsenoside epimers such as 20(R)- and 20(S)-ginsenoside Rg3 in cholesterol-deprived medium. We found that ginsenoside Rh1 almost restored normal growth of worms in cholesterol-deprived medium in F1 generation. However, supplement of ginsenoside Rh2 caused a suppression of worm growths in cholesterol-deprived medium. In addition, CK and PPD also slightly restored normal growth of worms in cholesterol-deprived medium but PPT not. In experiments using ginsenoside epimers, supplement of 20(S)- but not 20(R)-ginsenoside Rg3 in cholesterol-deprived medium also almost restored worm growth. These results indicate that the absence or presence of carbohydrate component at backbone of ginsenoside, the number of carbohydrate attached at carbon-3, and the position of hydroxyl group at carbon-20 of ginsenoside might plays important roles in restoration of worm growth in cholesterol-deprived medium.


Journal of Neurophysiology | 2015

Synaptic enhancement induced by gintonin via lysophosphatidic acid receptor activation in central synapses

Hoyong Park; Sungmin Kim; Jeehae Rhee; Hyeon-Joong Kim; Jung-Soo Han; Seung-Yeol Nah; ChiHye Chung

Lysophosphatidic acid (LPA) is one of the well-characterized, ubiquitous phospholipid molecules. LPA exerts its effect by activating G protein-coupled receptors known as LPA receptors (LPARs). So far, LPAR signaling has been critically implicated during early development stages, including the regulation of synapse formation and the morphology of cortical and hippocampal neurons. In adult brains, LPARs seem to participate in cognitive as well as emotional learning and memory. Recent studies using LPAR1-deficient mice reported impaired performances in a number of behavioral tasks, including the hippocampus-dependent spatial memory and fear conditioning tests. Nevertheless, the effect of LPAR activation in the synaptic transmission of central synapses after the completion of embryonic development has not been investigated. In this study, we took advantage of a novel extracellular agonist for LPARs called gintonin to activate LPARs in adult brain systems. Gintonin, a recently identified active ingredient in ginseng, has been shown to activate LPARs and mobilize Ca(2+) in an artificial cell system. We found that the activation of LPARs by application of gintonin acutely enhanced both excitatory and inhibitory transmission in central synapses, albeit through tentatively distinct mechanisms. Gintonin-mediated LPAR activation primarily resulted in synaptic enhancement and an increase in neuronal excitability in a phospholipase C-dependent manner. Our findings suggest that LPARs are able to directly potentiate synaptic transmission in central synapses when stimulated exogenously. Therefore, LPARs could serve as a useful target to modulate synaptic activity under pathological conditions, including neurodegenerative diseases.


European Journal of Pharmacology | 2011

Ginsenoside Rg3 decelerates hERG K+ channel deactivation through Ser631 residue interaction

Sun-Hye Choi; Tae-Joon Shin; Sung-Hee Hwang; Byung-Hwan Lee; Jiyeon Kang; Hyeon-Joong Kim; Su-Hyun Jo; Han Choe; Seung-Yeol Nah

The human ether-a-go-go-related gene (hERG) cardiac K(+) channels are one of the representative pharmacological targets for development of drugs against cardiovascular diseases such as arrhythmia. Panax ginseng has been known to have cardio-protective effects. However, little is known about the molecular mechanisms of how ginsenosides, the active ingredients in Panax ginseng, interact with hERG K(+) channel proteins. In the present study, we first examined the effects of various ginsenosides on hERG K(+) channel activity by expressing human α subunits in Xenopus oocytes. Among them ginsenoside Rg(3) (Rg(3)) most potently enhanced outward I(hERG) and peak I(tail). Rg(3) induced a large persistent deactivating-tail current (I(deactivating-tail)) and profoundly decelerated deactivating current decay in both concentration- and voltage-dependent manners. The EC(50) for steady-state I(hERG), peak I(tail), and persistent I(deactivating-tail) was 0.41±0.05, 0.61±0.11, and 0.36±0.04μM, respectively. Rg(3) actions were blocked by bepridil, a hERG K(+) channel antagonist. Site-directed mutation of S631, which is located at the channel pore entryway, to S631C in hERG K(+) channel abolished Rg(3) actions on hERG K(+) channels. These results indicate that S631 residue of hERG K(+) channel plays an important role in Rg(3)-mediated induction of a persistent I(deactivating-tail) and in a deceleration of hERG K(+) channel deactivation.


Journal of Ginseng Research | 2016

Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration.

Sungmin Kim; Minsoo Kim; Kwanghoon Park; Hyeon-Joong Kim; Seok-Won Jung; Seung-Yeol Nah; Jung-Soo Han; ChiHye Chung

Background A number of neurological and neurodegenerative diseases share impaired cognition as a common symptom. Therefore, the development of clinically applicable therapies to enhance cognition has yielded significant interest. Previously, we have shown that activation of lysophosphatidic acid receptors (LPARs) via gintonin application potentiates synaptic transmission by the blockade of K+ channels in the mature hippocampus. However, whether gintonin may exert any beneficial impact directly on cognition at the neural circuitry level and the behavioral level has not been investigated. Methods In the current study, we took advantage of gintonin, a novel LPAR agonist, to investigate the effect of gintonin-mediated LPAR activation on cognitive performances. Hippocampus-dependent fear memory test, synaptic plasticity in the hippocampal brain slices, and quantitative analysis on synaptic plasticity-related proteins were used. Results Daily oral administration of gintonin for 1 wk significantly improved fear memory retention in the contextual fear-conditioning test in mice. We also found that oral administration of gintonin for 1 wk increased the expression of learning and memory-related proteins such as phosphorylated cyclic adenosine monophosphate-response element binding (CREB) protein and brain-derived neurotrophic factor (BDNF). In addition, prolonged gintonin administration enhanced long-term potentiation in the hippocampus. Conclusion Our observations suggest that the systemic gintonin administration could successfully improve contextual memory formation at the molecular and synaptic levels as well as the behavioral level. Therefore, oral administration of gintonin may serve as an effective noninvasive, nonsurgical method of enhancing cognitive functions.


Molecules and Cells | 2015

Oral Administration of Gintonin Attenuates Cholinergic Impairments by Scopolamine, Amyloid-β Protein, and Mouse Model of Alzheimer’s Disease

Hyeon-Joong Kim; Eun-Joo Shin; Byung-Hwan Lee; Sun-Hye Choi; Seok-Won Jung; Ik-Hyun Cho; Sung-Hee Hwang; Joon Yong Kim; Jung-Soo Han; ChiHye Chung; Choon-Gon Jang; Hyewon Rhim; Hyoung-Chun Kim; Seung-Yeol Nah

Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer’s disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced [Ca2+]i transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated [Ca2+]i transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 2 weeks) also significantly attenuated amyloid-β protein (Aβ)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to Aβ and could be utilized for AD prevention or therapy.


Journal of Ginseng Research | 2011

Differential Effects of Ginsenoside Metabolites on HERG K + Channel Currents

Sun-Hye Choi; Tae-Joon Shin; Sung-Hee Hwang; Byung-Hwan Lee; Jiyeon Kang; Hyeon-Joong Kim; Jae-Wook Oh; Chun Sik Bae; Soo-Han Lee; Seung-Yeol Nah

The human ether-a-go-go-related gene (HERG) cardiac K+ channels are one of the representative pharmacological targets for development of drugs against cardiovascular diseases such as arrhythmia. Panax ginseng has been known to exhibit cardioprotective effects. In a previous report we demonstrated that ginsenoside Rg3 regulates HERG K+ channels by decelerating deactivation. However, little is known about how ginsenoside metabolites regulate HERG K+ channel activity. In the present study, we examined the effects of ginsenoside metabolites such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT) on HERG K+ channel activity by expressing human α subunits in Xenopus oocytes. CK induced a large persistent deactivating-tail current (Ideactivating-tail) and significantly decelerated deactivating current decay in a concentration-dependent manner. The EC50 for persistent Ideactivating-tail was 16.6±1.3 μM. In contrast to CK, PPT accelerated deactivating-tail current deactivation. PPD itself had no effects on deactivating-tail currents, whereas PPD inhibited ginsenoside Rg3-induced persistent Ideactivating-tail and accelerated HERG K+ channel deactivation in a concentration-dependent manner. These results indicate that ginsenoside metabolites exhibit differential regulation on Ideactivating-tail of HERG K+ channel.


Neuroscience Letters | 2015

Gintonin, a novel ginseng-derived lysophosphatidic acid receptor ligand, stimulates neurotransmitter release

Sung-Hee Hwang; Byung-Hwan Lee; Sun-Hye Choi; Hyeon-Joong Kim; Seok-Won Jung; H.-Y. Kim; Ho-Chul Shin; Hyun Jin Park; Keun Hong Park; Myung Koo Lee; Seung-Yeol Nah

Gintonin is a novel ginseng-derived G protein-coupled lysophosphatidic acid (LPA) receptor ligand. Gintonin elicits an intracellular calcium concentration [Ca(2+)]i transient via activation of LPA receptors and regulates calcium-dependent ion channels and receptors. [Ca(2+)]i elevation by neurotransmitters or depolarization is usually coupled to neurotransmitter release in neuronal cells. Little is known about whether gintonin-mediated [Ca(2+)]i transients are also coupled to neurotransmitter release. The PC12 cell line is derived from a pheochromocytoma of the rat adrenal medulla and is widely used as a model for catecholamine release. In the present study, we examined the effects of gintonin on dopamine release in PC12 cells. Application of gintonin to PC12 cells induced [Ca(2+)]i transients in concentration-dependent and reversible manners. However, ginsenoside Rg3, another active ingredient of ginseng, induced a lagged and irreversible [Ca(2+)]i increase. The induction of gintonin-mediated [Ca(2+)]i transients was attenuated or blocked by the LPA1/3 receptor antagonist Ki16425, a phospholipase C inhibitor, an inositol 1,4,5-triphosphate receptor antagonist, and an intracellular Ca(2+) chelator. Repeated treatment with gintonin induced homologous desensitization of [Ca(2+)]i transients. Gintonin treatment in PC12 cells increased the release of dopamine in a concentration-dependent manner. Intraperitoneal administration of gintonin to mice also increased serum dopamine concentrations. The present study shows that gintonin-mediated [Ca(2+)]i transients are coupled to dopamine release via LPA receptor activation. Finally, gintonin-mediated [Ca(2+)]i transients and dopamine release via LPA receptor activation might explain one mechanism of gintonin-mediated inter-neuronal modulation in the nervous system.

Collaboration


Dive into the Hyeon-Joong Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyoung-Chun Kim

Kangwon National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hyewhon Rhim

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge