Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung Hee Hwang is active.

Publication


Featured researches published by Sung Hee Hwang.


Molecules and Cells | 2012

Gintonin, Newly Identified Compounds from Ginseng, Is Novel Lysophosphatidic Acids-Protein Complexes and Activates G Protein-Coupled Lysophosphatidic Acid Receptors with High Affinity

Sung Hee Hwang; Tae-Joon Shin; Sun-Hye Choi; Hee-Jung Cho; Byung-Hwan Lee; Mi Kyung Pyo; Jun-Ho Lee; Jiyeon Kang; Hyeon-Joong Kim; Chan-Woo Park; Ho-Chul Shin; Seung-Yeol Nah

Recently, we isolated a subset of glycolipoproteins from Panax ginseng, that we designated gintonin, and demonstrated that it induced [Ca2+]i transients in cells via G-protein-coupled receptor (GPCR) signaling pathway(s). However, active components responsible for Ca2+ mobilization and the corresponding receptor(s) were unknown. Active component(s) for [Ca2+]i transients of gintonin were analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry and ion-mobility mass spectrometry, respectively. The corresponding receptor(s) were investigated through gene expression assays. We found that gintonin contains LPA C18:2 and other LPAs. Proteomic analysis showed that ginseng major latex-like protein and ribonuclease-like storage proteins are protein components of gintonin. Gintonin induced [Ca2+]i transients in B103 rat neuroblastoma cells transfected with human LPA receptors with high affinity in order of LPA2 > LPA5 > LPA1 > LPA3 > LPA4. The LPA1/LPA3 receptor antagonist Ki16425 blocked gintonin action in cells expressing LPA1 or LPA3. Mutations of binding sites in the LPA3 receptor attenuated gintonin action. Gintonin acted via pertussis toxin (PTX)-sensitive and -insensitive G protein-phospholipase C (PLC)-inositol 1,4,5-trisphosphate (IP3)-Ca2+ pathways. However, gintonin had no effects on other receptors examined. In human umbilical vein endothelial cells (HUVECs) gintonin stimulated cell proliferation and migration. Gintonin stimulated ERK1/2 phosphorylation. PTX blocked gintonin-mediated migration and ERK1/2 phosphorylation. In PC12 cells gintonin induced morphological changes, which were blocked by Rho kinase inhibitor Y-27632. Gintonin contains GPCR ligand LPAs in complexes with ginseng proteins and could be useful in the development of drugs targeting LPA receptors.


Journal of Alzheimer's Disease | 2012

Gintonin, a Ginseng-Derived Lysophosphatidic Acid Receptor Ligand, Attenuates Alzheimer's Disease-Related Neuropathies: Involvement of Non-Amyloidogenic Processing

Sung Hee Hwang; Eun-Joo Shin; Tae-Joon Shin; Byung-Hwan Lee; Sun-Hye Choi; Jiyeon Kang; Hyeon-Joong Kim; Seung-Hwan Kwon; Choon-Gon Jang; Jun-Ho Lee; Hyoung-Chun Kim; Seung-Yeol Nah

Ginseng extracts show cognition-enhancing effects in Alzheimers disease (AD) patients. However, little is known about the active components and molecular mechanisms of how ginseng exerts its effects. Recently, we isolated a novel lysophosphatidic acid (LPA) receptor-activating ligand from ginseng, gintonin. AD is caused by amyloid-β protein (Aβ) accumulation. Aβ is derived from amyloid-β protein precursors (AβPPs) through the amyloidogenic pathway. In contrast, non-amyloidogenic pathways produce beneficial, soluble AβPPα (sAβPPα). Here, we describe our investigations of the effect of gintonin on sAβPPα release, Aβ formation, Swedish-AβPP transfection-mediated neurotoxicity in SH-SY5Y neuroblastoma cells, and Aβ-induced neuropathy in mice. Gintonin promoted sAβPPα release in a concentration- and time-dependent manner. Gintonin action was also blocked by the Ca2+ chelator BAPTA, α-secretase inhibitor TAPI-2, and protein-trafficking inhibitor brefeldin. Gintonin decreased Aβ1-42 release and attenuated Aβ1-40-induced cytotoxicity in SH-SY5Y cells. Gintonin also rescued Aβ1-40-induced cognitive dysfunction in mice. Moreover, in a transgenic mouse AD model, long-term oral administration of gintonin attenuated amyloid plaque deposition as well as short- and long-term memory impairment. In the present study, we demonstrated that gintonin mediated the promotion of non-amyloidogenic processing to stimulate sAβPPα release to restore brain function in mice with AD. Gintonin could be a useful agent for AD prevention or therapy.


Molecules and Cells | 2012

Gintonin, a ginseng-derived novel ingredient, evokes long-term potentiation through N-methyl-D-aspartic acid receptor activation: Involvement of LPA receptors

Tae Joon Shin; Hyeon Joong Kim; Byeong Jae Kwon; Sun Hye Choi; Hyun-Bum Kim; Sung Hee Hwang; Byung Hwan Lee; Sang-Mok Lee; R. Suzanne Zukin; Ji Ho Park; Hyoung Chun Kim; Hyewhon Rhim; Joon Hee Lee; Seung Yeol Nah

Ginseng has been shown to have memory-improving effects in human. However, little is known about the active components and the molecular mechanisms underlying its effects. Recently, we isolated novel lysophosphatidic acids (LPAs)-ginseng protein complex derived from ginseng, gintonin. Gintonin activates G protein-coupled LPA receptors with high affinity. Gintonin activated Ca2+-activated Clchannels in Xenopus oocytes through the activation of endogenous LPA receptor. In the present study, we investigated whether the activation of LPA receptor by gintonin is coupled to the regulation of N-methyl-d-aspartic acid (NMDA) receptor channel activity in Xenopus oocytes expressing rat NMDA receptors. The NMDA receptor-mediated ion current (INMDA) was measured using the two-electrode voltage-clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, gintonin enhanced INMDA in a concentration-dependent manner. Gintonin-mediated INMDA enhancement was blocked by Ki16425, an LPA1/3 receptor antagonist. Gintonin action was blocked by a PLC inhibitor, IP3 receptor antagonist, Ca2+ chelator, and a tyrosine kinase inhibitor. The site-directed mutation of Ser1308 of the NMDA receptor, which is phosphorylated by protein kinase C (PKC), to an Ala residue, or co-expression of receptor protein tyrosine phosphatase with the NMDA receptor attenuated gintonin action. Moreover, gintonin treatment elicited a transient elevation of [Ca2+]i in cultured hippocampal neurons and elevated longterm potentiation (LTP) in both concentration-dependent manners in rat hippocampal slices. Gintonin-mediated LTP induction was abolished by Ki16425. These results indicate that gintonin-mediated INMDA potentiation and LTP induction in the hippocampus via the activation of LPA receptor might be responsible for ginseng-mediated improvement of memory-related brain functions.


International Journal of Oncology | 2013

Suppression of metastasis of intravenously-inoculated B16/F10 melanoma cells by the novel ginseng-derived ingredient, gintonin: Involvement of autotaxin inhibition

Sung Hee Hwang; Byung Hwan Lee; Hyeon Joong Kim; Hee Jung Cho; Ho Chul Shin; Keum Soon Im; Sun Hye Choi; Tae Joon Shin; Sang-Mok Lee; Suk Woo Nam; Hyoung Chun Kim; Hyewon Rhim; Seung Yeol Nah

Ginseng has been used for cancer prevention. However, little is known about its active components and the molecular mechanisms underlying its effects. Recently, we isolated a unique lysophosphatidic acid (LPA) receptor ligand, gintonin. Gintonin contains approximately 9.5% LPA, mainly LPA C18:2. Autotaxin (ATX) is responsible for metastasis by overproducing LPA in cancers. However, LPA, particularly LPA C18:2, is a strong negative feedback ATX inhibitor. It is unknown whether gintonin inhibits ATX activity and whether gintonin‑induced ATX inhibition is coupled with antimetastatic activity. In this study, we examined whether gintonin and LPA C18:2 inhibit ATX activity and metastasis‑related cellular activities in melanoma cells. We found that gintonin and LPA C18:2 inhibited the purified and secreted ATX activity from melanoma cells in a concentration‑dependent manner. Gintonin also inhibited cell migration with a minimal inhibition of cell growth. The oral administration of gintonin or LPA C18:2 inhibited lung metastasis induced by tail‑vein inoculations of melanoma cells. Moreover, the oral administration of gintonin significantly suppressed the tumor growth induced by subcutaneous grafts of melanoma cells. A histological analysis showed that the oral administration of gintonin reduced tumor necrosis, the pleomorphism of tumor cells, tumor cell mitosis and angiogenesis. The present study demonstrates that the gintonin‑induced inhibition of ATX activity may be the molecular basis of ginseng‑induced antimetastatic and antitumor activities.


Journal of Ginseng Research | 2011

A simple method for the preparation of crude gintonin from ginseng root, stem, and leaf.

Mi Kyung Pyo; Sun-Hye Choi; Tae-Joon Shin; Sung Hee Hwang; Byung-Hwan Lee; Jiyeon Kang; Hyeon-Joong Kim; Soo-Han Lee; Seung-Yeol Nah

Ginseng has been used as a general tonic agent to invigorate the human body as an adaptogenic agent. In a previous report, we have shown that ginseng contains a novel glycolipoprotein called gintonin. The main function of gintonin is to transiently enhance intracellular free Ca2+ [Ca2+]i levels in animal cells. The previous method for gintonin isolation included multiple steps using organic solvents. In the present report, we developed a simple method for the preparation of crude gintonin from ginseng root as well as stem and leaf, which produced a higher yield of gintonin than the previous one. The yield of gintonin was 0.20%, 0.29%, and 0.81% from ginseng root, stem, and leaf, respectively. The apparent molecular weight of gintonin isolated from stem and leaf through sodium dodecyl sulfate polyacrylamide gel electrophoresis was almost same as that from root but the compositions of amino acids, carbohydrates or lipids differed slightly between them. We also examined the effects of crude gintonin from ginseng root, stem, and leaf on endogenous Ca2+-activated Cl- channel (CaCC) activity of Xenopus oocytes through mobilization of [Ca2+]i. We found that the order of potency for the activation of CaCC was ginseng root > stem > leaf. The ED50 was 1.4±1.4, 4.5±5.9, and 3.9±1.1 μg/mL for root, stem and leaf, respectively. In the present study, we demonstrated for the first time that in addition to ginseng root, ginseng stem and leaf also contain gintonin. Gintonin can be prepared from a simple method with higher yield of gintonin from ginseng root, stem, and leaf. Finally, these results demonstrate the possibility that ginseng stem and leaf could also be utilized for ginstonin preparation after a simple procedure, rather than being discarded.


Molecules and Cells | 2011

Ginsenoside Rg3 enhances large conductance Ca2+-activated potassium channel currents: A role of Tyr360 residue

Sun-Hye Choi; Tae-Joon Shin; Byung-Hwan Lee; Sung Hee Hwang; Sang-Mok Lee; Byung-Cheol Lee; Cheol-Seung Park; Tal Soo Ha; Seung-Yeol Nah

Ginsenosides, active ingredients of Panax ginseng, are known to exhibit neuroprotective effects. Large-conductance Ca2+-activated K+ (BKCa) channels are key modulators of cellular excitability of neurons and vascular smooth muscle cells. In the present study, we examined the effects of ginsenosides on rat brain BKCa (rSlo) channel activity heterologously expressed in Xenopus oocytes to elucidate the molecular mechanisms how ginsenoside regulates the BKCa channel activity. Ginsenoside Rg3 (Rg3) enhanced outward BKCa channel currents. The Rg3-enhancement of outward BKCa channel currents was concentration-dependent, voltage-dependent, and reversible. The EC50 was 15.1 ± 3.1 μM. Rg3 actions were not desensitized by repeated treatment. Tetraetylammonium (TEA), a K+ channel blocker, inhibited BKCa channel currents. We examined whether extracellular TEA treatment could alter the Rg3 action and vice versa. TEA caused a rightward shift of the Rg3 concentration-response curve (i.e., much higher concentration of Rg3 is required for the activation of BKCa channel compared to the absence of TEA), while Rg3 caused a rightward shift of the TEA concentration-response curve in wild-type channels. Mutation of the extracellular TEA binding site Y360 to Y360I caused a rightward shift of the TEA concentration-response curve and almost abolished both the Rg3 action and Rg3-induced rightward shift of TEA concentration-response curve. These results indicate that Tyr360 residue of BKCa channel plays an important role in the Rg3-enhancement of BKCa channel currents.


The Korean Journal of Physiology and Pharmacology | 2012

Effects of Protopanaxatriol-Ginsenoside Metabolites on Rat N-Methyl-D-Aspartic Acid Receptor-Mediated Ion Currents

Tae Joon Shin; Sung Hee Hwang; Sun Hye Choi; Byung Hwan Lee; Jiyeon Kang; Hyeon Joong Kim; R. Suzanne Zukin; Hyewhon Rhim; Seung Yeol Nah

Ginsenosides are low molecular weight glycosides found in ginseng that exhibit neuroprotective effects through inhibition of N-methyl-D-aspartic acid (NMDA) receptor channel activity. Ginsenosides, like other natural compounds, are metabolized by gastric juices and intestinal microorganisms to produce ginsenoside metabolites. However, little is known about how ginsenoside metabolites regulate NMDA receptor channel activity. In the present study, we investigated the effects of ginsenoside metabolites, such as compound K (CK), protopanaxadiol (PPD), and protopanaxatriol (PPT), on oocytes that heterologously express the rat NMDA receptor. NMDA receptor-mediated ion current (I(NMDA)) was measured using the 2-electrode voltage clamp technique. In oocytes injected with cRNAs encoding NMDA receptor subunits, PPT, but not CK or PPD, reversibly inhibited I(NMDA) in a concentration-dependent manner. The IC(50) for PPT on I(NMDA) was 48.1±4.6 µM, was non-competitive with NMDA, and was independent of the membrane holding potential. These results demonstrate the possibility that PPT interacts with the NMDA receptor, although not at the NMDA binding site, and that the inhibitory effects of PPT on I(NMDA) could be related to ginseng-mediated neuroprotection.


Journal of Ginseng Research | 2011

An Edible Gintonin Preparation from Ginseng

Sun-Hye Choi; Tae-Joon Shin; Byung-Hwan Lee; Sung Hee Hwang; Jiyeon Kang; Hyun-Joong Kim; Chan-Woo Park; Seung-Yeol Nah

Ginseng, the root of Panax ginseng, is one of the oldest herbal medicines. It has a variety of physiological and pharmacological effects. Recently, we isolated a subset of glycolipoproteins that we designated gintonin, and demonstrated that it induced transient change in intracellular calcium concentration ([Ca2+]i) in cells via G-protein-coupled receptor signaling pathway(s). The previous method for gintonin isolation included multiple steps using methanol, butanol, and other organic solvents. In the present study, we developed a much simple method for the preparation of gintonin from ginseng root using 80% ethanol extraction. The extracted fraction was designated edible gintonin. This method produced a high yield of gintonin (0.20%). The chemical characteristics of gintonin such as molecular weight and the composition of the extract product were almost identical as the gintonin prepared using the previous extraction regimen involving various organic solvents. We also examined the physiological effects of edible gintonin on endogenous Ca2+-activated Cl- channel activity of Xenopus oocytes. The 50% effective dose was 1.03±0.3 μg/mL. Finally, since gintonin preparation through ethanol extraction is easily reproducible, gintonin could be commercially applied for ginseng-derived functional health food and/or drug following the confirmations of in vitro and in vivo physiological and pharmacological effects of gintonin.


The Korean Journal of Physiology and Pharmacology | 2013

Resveratrol Inhibits GABAC ρ Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

Byung Hwan Lee; Sun Hye Choi; Sung Hee Hwang; Hyeon Joong Kim; Joon Hee Lee; Seung Yeol Nah

Resveratrol is a phytoalexin found in grapes, red wine, and berries. Resveratrol has been known to have many beneficial health effects, such as anti-cancer, neuroprotective, anti-inflammatory, and life-prolonging effects. However, relatively little is known about the effects of resveratrol on the regulation of ligand-gated ion channels. We have previously reported that resveratrol regulates subsets of homomeric ligand-gated ion channels such as those of 5-HT3A receptors. The γ-aminobutyric acidC (GABAC) receptor is mainly expressed in retinal bipolar cells and plays an important role in visual processing. In the present study, we examined the effects of resveratrol on the channel activity of homomeric GABAC receptor expressed in Xenopus oocytes injected with cRNA encoding human GABAC ρ subunits. Our data show that the application of GABA elicits an inward peak current (IGABA) in oocytes that express the GABAC receptor. Resveratrol treatment had no effect on oocytes injected with H2O or with GABAC receptor cRNA. Co-treatment with resveratrol and GABA inhibited IGABA in oocytes with GABAC receptors. The inhibition of IGABA by resveratrol was in a reversible and concentration-dependent manner. The IC50 of resveratrol was 28.9±2.8 µM in oocytes expressing GABAC receptor. The inhibition of IGABA by resveratrol was in voltage-independent and non-competitive manner. These results indicate that resveratrol might regulate GABAC receptor expression and that this regulation might be one of the pharmacological actions of resveratrol on the nervous system.


Journal of Ginseng Research | 2011

Novel Glycolipoproteins from Ginseng

Mi Kyung Pyo; Sun-Hye Choi; Sung Hee Hwang; Tae-Joon Shin; Byung-Hwan Lee; Sang-Mok Lee; Yoongho Lim; Dong-Hyun Kim; Seung-Yeol Nah

Collaboration


Dive into the Sung Hee Hwang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge