Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyeonsoo Jeong is active.

Publication


Featured researches published by Hyeonsoo Jeong.


Genome Biology | 2017

The genome landscape of indigenous African cattle

Jaemin Kim; Olivier Hanotte; Okeyo Mwai; Tadelle Dessie; Salim Bashir; Boubacar Diallo; Morris Agaba; Kwondo Kim; Woori Kwak; Samsun Sung; Minseok Seo; Hyeonsoo Jeong; Taehyung Kwon; Mengistie Taye; Ki-Duk Song; Dajeong Lim; Seoae Cho; H. J. Lee; Duhak Yoon; Sung Jong Oh; Stephen Kemp; Hak-Kyo Lee; Heebal Kim

BackgroundThe history of African indigenous cattle and their adaptation to environmental and human selection pressure is at the root of their remarkable diversity. Characterization of this diversity is an essential step towards understanding the genomic basis of productivity and adaptation to survival under African farming systems.ResultsWe analyze patterns of African cattle genetic variation by sequencing 48 genomes from five indigenous populations and comparing them to the genomes of 53 commercial taurine breeds. We find the highest genetic diversity among African zebu and sanga cattle. Our search for genomic regions under selection reveals signatures of selection for environmental adaptive traits. In particular, we identify signatures of selection including genes and/or pathways controlling anemia and feeding behavior in the trypanotolerant N’Dama, coat color and horn development in Ankole, and heat tolerance and tick resistance across African cattle especially in zebu breeds.ConclusionsOur findings unravel at the genome-wide level, the unique adaptive diversity of African cattle while emphasizing the opportunities for sustainable improvement of livestock productivity on the continent.


Scientific Reports | 2016

The aglycone of ginsenoside Rg3 enables glucagon-like peptide-1 secretion in enteroendocrine cells and alleviates hyperglycemia in type 2 diabetic mice

Ki-Suk Kim; Hea Jung Yang; In-Seung Lee; Kang-Hoon Kim; Jiyoung Park; Hyeonsoo Jeong; Yoo-Mi Kim; Kwang Seok Ahn; Yun-Cheol Na; Hyeung-Jin Jang

Ginsenosides can be classified on the basis of the skeleton of their aglycones. Here, we hypothesized that the sugar moieties attached to the dammarane backbone enable binding of the ginsenosides to the sweet taste receptor, eliciting glucagon-like peptide-1 (GLP-1) secretion in the enteroendocrine L cells. Using the human enteroendocrine NCI-H716 cells, we demonstrated that 15 ginsenosides stimulate GLP-1 secretion according to the position of their sugar moieties. Through a pharmacological approach and RNA interference technique to inhibit the cellular signal cascade and using the Gαgust−/− mice, we elucidated that GLP-1 secreting effect of Rg3 mediated by the sweet taste receptor mediated the signaling pathway. Rg3, a ginsenoside metabolite that transformed the structure through a steaming process, showed the strongest GLP-1 secreting effects in NCI-H716 cells and also showed an anti-hyperglycemic effect on a type 2 diabetic mouse model through increased plasma GLP-1 and plasma insulin levels during an oral glucose tolerance test. Our study reveals a novel mechanism where the sugar moieties of ginsenosides Rg3 stimulates GLP-1 secretion in enteroendocrine L cells through a sweet taste receptor-mediated signal transduction pathway and thus has an anti-hyperglycemic effect on the type 2 diabetic mouse model.


Nucleic Acids Research | 2016

HGTree: database of horizontally transferred genes determined by tree reconciliation

Hyeonsoo Jeong; Samsun Sung; Taehyung Kwon; Minseok Seo; Kelsey Caetano-Anolles; Sang Ho Choi; Seoae Cho; Arshan Nasir; Heebal Kim

The HGTree database provides putative genome-wide horizontal gene transfer (HGT) information for 2472 completely sequenced prokaryotic genomes. This task is accomplished by reconstructing approximate maximum likelihood phylogenetic trees for each orthologous gene and corresponding 16S rRNA reference species sets and then reconciling the two trees under parsimony framework. The tree reconciliation method is generally considered to be a reliable way to detect HGT events but its practical use has remained limited because the method is computationally intensive and conceptually challenging. In this regard, HGTree (http://hgtree.snu.ac.kr) represents a useful addition to the biological community and enables quick and easy retrieval of information for HGT-acquired genes to better understand microbial taxonomy and evolution. The database is freely available and can be easily scaled and updated to keep pace with the rapid rise in genomic information.


BMC Genetics | 2015

Exploring evidence of positive selection reveals genetic basis of meat quality traits in Berkshire pigs through whole genome sequencing.

Hyeonsoo Jeong; Ki-Duk Song; Minseok Seo; Kelsey Caetano-Anolles; Jaemin Kim; Woori Kwak; Jae-Don Oh; Eui-Soo Kim; Dong Kee Jeong; Seoae Cho; Heebal Kim; Hak-Kyo Lee

BackgroundNatural and artificial selection following domestication has led to the existence of more than a hundred pig breeds, as well as incredible variation in phenotypic traits. Berkshire pigs are regarded as having superior meat quality compared to other breeds. As the meat production industry seeks selective breeding approaches to improve profitable traits such as meat quality, information about genetic determinants of these traits is in high demand. However, most of the studies have been performed using trained sensory panel analysis without investigating the underlying genetic factors. Here we investigate the relationship between genomic composition and this phenotypic trait by scanning for signatures of positive selection in whole-genome sequencing data.ResultsWe generated genomes of 10 Berkshire pigs at a total of 100.6 coverage depth, using the Illumina Hiseq2000 platform. Along with the genomes of 11 Landrace and 13 Yorkshire pigs, we identified genomic variants of 18.9 million SNVs and 3.4 million Indels in the mapped regions. We identified several associated genes related to lipid metabolism, intramuscular fatty acid deposition, and muscle fiber type which attribute to pork quality (TG, FABP1, AKIRIN2, GLP2R, TGFBR3, JPH3, ICAM2, and ERN1) by applying between population statistical tests (XP-EHH and XP-CLR). A statistical enrichment test was also conducted to detect breed specific genetic variation. In addition, de novo short sequence read assembly strategy identified several candidate genes (SLC25A14, IGF1, PI4KA, CACNA1A) as also contributing to lipid metabolism.ConclusionsResults revealed several candidate genes involved in Berkshire meat quality; most of these genes are involved in lipid metabolism and intramuscular fat deposition. These results can provide a basis for future research on the genomic characteristics of Berkshire pigs.


Frontiers in Genetics | 2017

A Preliminary List of Horizontally Transferred Genes in Prokaryotes Determined by Tree Reconstruction and Reconciliation

Hyeonsoo Jeong; Arshan Nasir

Genome-wide global detection of genes involved in horizontal gene transfer (HGT) remains an active area of research in medical microbiology and evolutionary genomics. Utilizing the explicit evolutionary method of comparing topologies of a total of 154,805 orthologous gene trees against corresponding 16S rRNA “reference” trees, we previously detected a total of 660,894 candidate HGT events in 2,472 completely-sequenced prokaryotic genomes. Here, we report an HGT-index for each individual gene-reference tree pair reconciliation, representing the total number of detected HGT events on the gene tree divided by the total number of genomes (taxa) member of that tree. HGT-index is thus a simple measure indicating the sensitivity of prokaryotic genes to participate (or not participate) in HGT. Our preliminary list provides HGT-indices for a total of 69,365 genes (detected in >10 and <50% available prokaryotic genomes) that are involved in a wide range of biological processes such as metabolism, information, and bacterial response to environment. Identification of horizontally-derived genes is important to combat antibiotic resistance and is a step forward toward reconstructions of improved phylogenies describing the history of life. Our effort is thus expected to benefit ongoing research in the fields of clinical microbiology and evolutionary biology.


Scientific Reports | 2016

Whole genome sequencing of Gyeongbuk Araucana, a newly developed blue-egg laying chicken breed, reveals its origin and genetic characteristics.

Hyeonsoo Jeong; Kwondo Kim; Kelsey Caetano-Anolles; Heebal Kim; Byung-Ki Kim; Jun-Koo Yi; Jaejung Ha; Seoae Cho; Dong Yep Oh

Chicken, Gallus gallus, is a valuable species both as a food source and as a model organism for scientific research. Here, we sequenced the genome of Gyeongbuk Araucana, a rare chicken breed with unique phenotypic characteristics including flight ability, large body size, and laying blue-shelled eggs, to identify its genomic features. We generated genomes of Gyeongbuk Araucana, Leghorn, and Korean Native Chicken at a total of 33.5, 35.82, and 33.23 coverage depth, respectively. Along with the genomes of 12 Chinese breeds, we identified genomic variants of 16.3 million SNVs and 2.3 million InDels in mapped regions. Additionally, through assembly of unmapped reads and selective sweep, we identified candidate genes that fall into heart, vasculature and muscle development and body growth categories, which provided insight into Gyeongbuk Araucana’s phenotypic traits. Finally, genetic variation based on the transposable element insertion pattern was investigated to elucidate the features of transposable elements related to blue egg shell formation. This study presents results of the first genomic study on the Gyeongbuk Araucana breed; it has potential to serve as an invaluable resource for future research on the genomic characteristics of this chicken breed as well as others.


Evidence-based Complementary and Alternative Medicine | 2016

Antihyperglycemic and Antiobesity Effects of JAL2 on db/db Mice

In-Seung Lee; Ki-Suk Kim; Kang-Hoon Kim; Jiyoung Park; Hyeonsoo Jeong; Yumi Kim; Yun-Cheol Na; Won Seok Chung; Kwang-Seok Ahn; Seok-Geun Lee; Jae Young Um; Jun Hee Lee; Hyeung-Jin Jang

Lonicera japonica Thunb. (LJT) and Rehmannia glutinosa Libosch. (RGL) have been used traditionally as a herbal medicine in Korean medicine. Using LC/Q-TOF was performed to profile the two herbal medicines and the mixture of LJR and RGL (JAL2, ratio 1 : 1). We performed oral glucose tolerance test (OGTT) and plasma GLP-1 and insulin secretion by multiplex assays to investigate antidiabetic effects of LJT, RGL, and JAL2 in db/db mice, the mice model of type 2 diabetes mellitus (T2DM). Also, the antiobesity-related factors such as plasma peptide YY (PYY), triglyceride, total cholesterol, HDL, LDL, and weight of liver, epididymal, and retroperitoneal fat tissue were investigated. Through the multiplex assay, it was found that JAL2 treatment more efficiently attenuated high levels of blood glucose by stimulating GLP-1 secretion and reduced LDL concentration and weight of liver and retroperitoneal fat tissue compared to LJT or RGL treated separately. These results suggest that the JAL2 has antidiabetes and antiobesity effects in T2DM mice model.


Asian-australasian Journal of Animal Sciences | 2015

Genome-wide Association Study (GWAS) and Its Application for Improving the Genomic Estimated Breeding Values (GEBV) of the Berkshire Pork Quality Traits

Young-Sup Lee; Hyeonsoo Jeong; Mengistie Taye; Hyeon Jeong Kim; Sojeong Ka; Youn-Chul Ryu; Seoae Cho

The missing heritability has been a major problem in the analysis of best linear unbiased prediction (BLUP). We introduced the traditional genome-wide association study (GWAS) into the BLUP to improve the heritability estimation. We analyzed eight pork quality traits of the Berkshire breeds using GWAS and BLUP. GWAS detects the putative quantitative trait loci regions given traits. The single nucleotide polymorphisms (SNPs) were obtained using GWAS results with p value <0.01. BLUP analyzed with significant SNPs was much more accurate than that with total genotyped SNPs in terms of narrow-sense heritability. It implies that genomic estimated breeding values (GEBVs) of pork quality traits can be calculated by BLUP via GWAS. The GWAS model was the linear regression using PLINK and BLUP model was the G-BLUP and SNP-GBLUP. The SNP-GBLUP uses SNP-SNP relationship matrix. The BLUP analysis using preprocessing of GWAS can be one of the possible alternatives of solving the missing heritability problem and it can provide alternative BLUP method which can find more accurate GEBVs.


Asian-australasian Journal of Animal Sciences | 2014

Native Pig and Chicken Breed Database: NPCDB

Hyeonsoo Jeong; Dae-Won Kim; Se-Yoon Chun; Samsun Sung; Hyeon-Jeong Kim; Seoae Cho; Heebal Kim; Sung-Jong Oh

Indigenous (native) breeds of livestock have higher disease resistance and adaptation to the environment due to high genetic diversity. Even though their extinction rate is accelerated due to the increase of commercial breeds, natural disaster, and civil war, there is a lack of well-established databases for the native breeds. Thus, we constructed the native pig and chicken breed database (NPCDB) which integrates available information on the breeds from around the world. It is a nonprofit public database aimed to provide information on the genetic resources of indigenous pig and chicken breeds for their conservation. The NPCDB (http://npcdb.snu.ac.kr/) provides the phenotypic information and population size of each breed as well as its specific habitat. In addition, it provides information on the distribution of genetic resources across the country. The database will contribute to understanding of the breed’s characteristics such as disease resistance and adaptation to environmental changes as well as the conservation of indigenous genetic resources.


ISRM AfriRock - Rock Mechanics for Africa | 2017

Experimental Study on Hydraulic Conductivity of a Rock Joint

Soo-Youn Choi; Hyeonsoo Jeong; Sunho Lee; Su-Kyung Jeon

Collaboration


Dive into the Hyeonsoo Jeong's collaboration.

Top Co-Authors

Avatar

Seoae Cho

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Heebal Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Minseok Seo

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Hak-Kyo Lee

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Jaemin Kim

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ki-Duk Song

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Samsun Sung

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Woori Kwak

Seoul National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge