Hyo-Kyoung Choi
Yonsei University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hyo-Kyoung Choi.
Molecular Cell | 2011
Hyo-Kyoung Choi; Kyung-Chul Choi; Jung-Yoon Yoo; Meiying Song; Suk Jin Ko; Chul Hoon Kim; Jin-Hyun Ahn; Kyung-Hee Chun; Jong In Yook; Ho-Geun Yoon
Dysregulation of Wnt signaling has been implicated in tumorigenesis. The role of Transducin β-like proteins TBL1-TBLR1 in the promotion of Wnt/β-catenin-mediated oncogenesis has recently been emphasized; however, the molecular basis of activation of Wnt signaling by the corepressor TBL1-TBLR1 is incompletely understood. Here, we show that both TBL1 and TBLR1 are SUMOylated in a Wnt signaling-dependent manner, and that this modification is selectively reversed by SUMO-specific protease I (SENP1). SUMOylation dismissed TBL1-TBLR1 from the nuclear hormone receptor corepressor (NCoR) complex, increased recruitment of the TBL1-TBLR1-β-catenin complex to the promoter of Wnt target genes, and consequently led to activation of Wnt signaling. Conversely, SENP1 decreased formation of the TBL1-TBLR1-β-catenin complex, leading to inhibition of β-catenin-mediated transcription. Importantly, inhibition of SUMOylation significantly decreased the tumorigenicity of SW480 colon cancer cells. Thus, our data reveal a mechanism for activation of Wnt signaling via the SUMOylation-dependent disassembly of the corepressor complex.
Cancer Letters | 2013
Hyeonseok Ko; Youngsin So; Hyelin Jeon; Mi-Hyeon Jeong; Hyo-Kyoung Choi; Seung-Hee Ryu; Sangwook Lee; Ho-Geun Yoon; Kyung-Chul Choi
Transforming growth factor-β1, the key ligand of Smad-dependent signaling pathway, is critical for epithelial-mesenchymal transition during embryo-morphogenesis, fibrotic diseases, and tumor metastasis. In this study, we found that activation of p300/CBP, a histone acetyltransferase, by TGF-β1 mediates Epithelial-mesenchymal transition (EMT) via acetylating Smad2 and Smad3 in TGF-β1 signaling pathway. We demonstrated that treatment with EGCG inhibited p300/CBP activity in human lung cancer cells. Also, we observed that EGCG potently inhibited TGF-β1-induced EMT and reversed the up-regulation of various genes during EMT. Our findings suggest that EGCG inhibits the induction of p300/CBP activity by TGF-β1. Therefore, EGCG inhibits TGF-β1-mediated EMT by suppressing the acetylation of Smad2 and Smad3 in human lung cancer cells.
Cellular and Molecular Life Sciences | 2010
Han-Cheon Kim; Kyung-Chul Choi; Hyo-Kyoung Choi; Hee-Bum Kang; Mi-Jeong Kim; Yoo-Hyun Lee; Ok-Hee Lee; Jeongmin Lee; Young Jun Kim; Woojin Jun; Jae Wook Jeong; Ho-Geun Yoon
We identified CREB3 as a novel HDAC3-interacting protein in a yeast two-hybrid screen for HDAC3-interacting proteins. Among all class I HDACs, CREB3 specifically interacts with HDAC3, in vitro and in vivo. HDAC3 efficiently inhibited CREB3-enhanced NF-κB activation, whereas the other class I HDACs did not alter NF-κB-dependent promoter activities or the expression of NF-κB target genes. Importantly, both knock-down of CREB3 and overexpression of HDAC3 suppressed the transcriptional activation of the novel CREB3-regulated gene, CXCR4. Furthermore, CREB3 was shown to bind to the CRE element in the CXCR4 promoter and to activate the transcription of the CXCR4 gene by causing dissociation of HDAC3 and subsequently increasing histone acetylation. Importantly, both the depletion of HDAC3 and the overexpression of CREB3 substantially increased the migration of MDA-MB-231 metastatic breast cancer cells. Taken together, these findings suggest that HDAC3 selectively represses CREB3-mediated transcriptional activation and chemotactic signalling in human metastatic breast cancer cells.
Journal of Medicinal Food | 2011
Si Yong Park; Yoo-Hyun Lee; Kyung-Chul Choi; Ah-Reum Seong; Hyo-Kyoung Choi; Ok-Hee Lee; Han-Joon Hwang; Ho-Geun Yoon
Histone acetylation, which is regulated by histone acetyltransferases (HATs) and deacetylases, is an epigenetic mechanism that influences eukaryotic transcription. Significant changes in histone acetylation are associated with cancer; therefore, manipulating the acetylation status of key gene targets is likely crucial for effective cancer therapy. Grape seed extract (GSE) has a known protective effect against prostate cancer. Here, we showed that GSE significantly inhibited HAT activity by 30-80% in vitro (P < .05). Furthermore, we demonstrated significant repression of androgen receptor (AR)-mediated transcription by GSE in prostate cancer cells by measuring luciferase activity using a pGL3-PSA construct bearing the AR element in the human prostate cancer cell line LNCaP (P < .05). GSE treatment also decreased the mRNA level of the AR-regulated genes PSA and NKX 3.1. Finally, GSE inhibited growth of LNCaP cells. These results indicate that GSE potently inhibits HAT, leading to decreased AR-mediated transcription and cancer cell growth, and implicate GSE as a novel candidate for therapeutic activity against prostate cancer.
Cancer Letters | 2015
Soo-Yeon Park; Hyo-Kyoung Choi; Youngsok Choi; Sungmin Kwak; Kyung-Chul Choi; Ho-Geun Yoon
Programmed cell death 5 (PDCD5) positively regulates p53-mediated apoptosis and rapidly accumulates upon DNA damage. However, the underlying mechanism of PDCD5 upregulation during the DNA damage response remains unknown. Here, we found that OTU deubiquitinase 5 (OTUD5) was bound to PDCD5 in response to etoposide treatment and increased the stability of PDCD5 by mediating deubiquitination of PDCD5 at Lys-97/98. Overexpression of OTUD5 efficiently enhanced the activation of both PDCD5 and p53. Conversely, PDCD5 knockdown greatly attenuated the effect of OTUD5 on p53 activation. In addition, when OTUD5 was depleted, PDCD5 failed to facilitate p53 activation, demonstrating an essential role for the PDCD5-OTUD5 network in p53 activation. Importantly, we found that OTUD5-dependent PDCD5 stabilization was required for sequential activation of p53 in response to genotoxic stress. The sequential activation of PDCD5 and p53 was abrogated by knockdown of OTUD5. Finally, impairment of the genotoxic stress response upon PDCD5 ablation was substantially rescued by reintroducing PDCD5(WT) but not PDCD5(E94D) (defective for OTUD5 interaction) or PDCD5(E16D) (defective for p53 interaction). Together, our findings have uncovered an apoptotic signaling cascade linking PDCD5, OTUD5, and p53 during genotoxic stress responses.
Bioorganic & Medicinal Chemistry Letters | 2015
Hyeonseok Ko; Hyelin Jeon; Dahae Lee; Hyo-Kyoung Choi; Ki Sung Kang; Kyung-Chul Choi
In the epithelial-mesenchymal transition (EMT), an important cellular process, epithelial cells become mesenchymal cells. This process is also critically involved in cancer metastasis. Sanguiin H6 is a compound derived from ellagitannin, which is found in berries. Sanguiin H6 shows various pharmacological properties, including anti-angiogenic activity. Because the possible role of sanguiin H6 in the EMT and the underlying molecular mechanisms are unclear, we investigated the effect of sanguiin H6 on the EMT. Transforming growth factor-beta 1 (TGF-β1) induces the EMT and promotes lung adenocarcinoma migration and invasion through the Smad2/3 signaling pathway. Thus, to understand the inhibitory effects of sanguiin H6 on lung cancer migration and invasion, we investigated the ability of sanguiin H6 to inhibit TGF-β1-induced EMT in the A549 cell line. We found that sanguiin H6 significantly prevented the activation of Smad2/3 signaling pathway by TGF-β1. Additionally, sanguiin H6 increased the expression of the epithelial marker E-cadherin and repressed the expression of Snail and the mesenchymal marker N-cadherin during TGF-β1-induced EMT. Moreover, sanguiin H6 regulated the expression of EMT-dependent genes induced by TGF-β1. Finally, sanguiin H6 inhibited the migration and invasion of TGF-β1-stimulated A549 cells. Taken together, our findings provide new evidence that sanguiin H6 suppresses lung cancer migration and invasion in vitro by inhibiting TGF-β1 induction of the EMT.
Physical Review Letters | 2008
C. S. Leem; Bum-Joon Kim; Chul Koo Kim; S Park; Taisuke Ohta; E. Rotenberg; Hyun-Sung Kim; M. Kim; Hyo-Kyoung Choi; Changyoung Kim
We obtained the spectral function of very high quality natural graphite single crystals using angle-resolved photoelectron spectroscopy. A clear separation of nonbonding and bonding bands and asymmetric lineshape are observed. The asymmetric line shapes are well accounted for by the finite photoelectron escape depth and the band structure. The extracted width of the spectral function (inverse of the photohole life time) near the K point is, beyond the maximum phonon energy, approximately proportional to the energy as expected from the linear density of states near the Fermi energy. The upper bound for the electron-phonon coupling constant is about 0.2, a much smaller value than the previously reported one.
Cancer Letters | 2015
Xiandan Cui; Hyo-Kyoung Choi; Young-Seok Choi; Soo-Yeon Park; Gi-Jun Sung; Yoo-Hyun Lee; Jeongmin Lee; Woo Jin Jun; Kyung-Sup Kim; Kyung-Chul Choi; Ho-Geun Yoon
Although PDCD5 promotes p53-mediated apoptosis in various cancers, little is known about PDCD5 regulation. We recently found that DNAJB1 interacts with PDCD5 and induces the ubiquitin-dependent proteasomal degradation of PDCD5, thereby inhibiting p53-mediated apoptosis. To investigate these novel roles for PDCD5 and DNAJB1, we performed DNAJB1 mapping with PDCD5. PDCD5 specifically binds to the DNAJB1-D5 domain (Δ180-210), which was found to be essential for the stabilization of PDCD5. Further study showed that DNAJB1 post-translationally regulates PDCD5 stability. DNAJB1 ubiquitinated PDCD5 via a ubiquitin-mediated pathway. In human lung A549 cancer cells, DNAJB1 promoted the ubiquitination and degradation of PDCD5 and inhibited p53 activation. However, DNAJB1 knockdown in A549 cells increased the etoposide-induced activation of the p53-mediated apoptosis pathway and repressed cancer cell growth. Because this function was p53 dependent, DNAJB1 depletion increased the expression of p53-targeted apoptosis genes. In conclusion, we screened a novel PDCD5-associating protein, DNAJB1, by yeast two-hybrid screening and provided evidences that DNAJB1 targets PDCD5 to suppress p53-dependent apoptosis of cancer cells. Thus, we identified DNAJB1 as a negative regulator of PDCD5-mediated apoptosis and found that the apoptosis network of PDCD5 regulates cancer cell death.
Journal of Cellular Physiology | 2013
Hyo-Kyoung Choi; Jung-Yoon Yoo; Mi-Hyeon Jeong; Soo-Yeon Park; Dong-Myoung Shin; Sung-Wuk Jang; Ho-Geun Yoon; Kyung-Chul Choi
Protein Kinase A (PKA) phosphorylates diverse protein substrates to modulate their function. In this study, we found that PKA specifically phosphorylates the RD1 (Repression Domain 1) domain of nuclear receptor corepressor (NCoR). We demonstrated that the Serine‐70 of NCoR is identified the critical amino acid for PKA‐dependent NCoR phosphorylation. Importantly, we found that PKA‐dependent phosphorylation enhances the nuclear translocation of NCoR. More importantly, the activation of PKA enhanced the repressive activity of NCoR in a reporter assay and potentiated the antagonist activity in the Androgen Receptor (AR)‐mediated transcription. Taken together, these results uncover a regulatory mechanism by which PKA positively modulates NCoR function in transcriptional regulation in prostate cancer. J. Cell. Physiol. 228: 1159–1165, 2013.
Molecular Endocrinology | 2008
Hyo-Kyoung Choi; Kyung-Chul Choi; Hee-Bum Kang; Han-Cheon Kim; Yoo-Hyun Lee; Seungjoo Haam; Hyoung-Gi Park; Ho-Geun Yoon
Lis-homology (LisH) motifs are involved in protein dimerization, and the discovery of the conserved N-terminal LisH domain in transducin beta-like protein 1 and its receptor (TBL1 and TBLR1) led us to examine the role of this domain in transcriptional repression. Here we show that multiple beta-transducin (WD-40) repeat-containing proteins interact to form oligomers in solution and that oligomerization depends on the presence of the LisH domain in each protein. Repression of transcription, as assayed using Gal4 fusion proteins, also depended on the presence of the LisH domain, suggesting that oligomerization is a prerequisite for efficient transcriptional repression. Furthermore, we show that the LisH domain is responsible for the binding to the hypoacetylated histone H4 tail and for stable chromatin targeting by the nuclear receptor corepressor complex. Mutations in conserved residues in the LisH motif of TBL1 and TBLR1 block histone binding, oligomerization, and transcriptional repression, supporting the functional importance of the LisH motif in transcriptional repression. Our results indicate that another WD-40 protein, TBL3, also preferentially binds to the N-terminal domain of TBL1 and TBLR1, and forms oligomers with other WD-40 proteins. Finally, we observed that the WD-40 proteins RbAp46 and RbAp48 of the sin3A corepressor complex failed to dimerize. We also found the specific interaction UbcH/E2 with TBL1, but not RbAp46/48. Altogether, our results thus indicate that the presence of multiple LisH/WD-40 repeat containing proteins is exclusive to nuclear receptor corepressor/ silencing mediator for retinoic and thyroid receptor complexes compared with other class 1 histone deacetylase-containing corepessor complexes.