Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ho-Geun Yoon is active.

Publication


Featured researches published by Ho-Geun Yoon.


Cancer Research | 2009

Epigallocatechin-3-gallate, a histone acetyltransferase inhibitor, inhibits EBV-induced B lymphocyte transformation via suppression of RelA acetylation.

Kyung-Chul Choi; Myung Gu Jung; Yoo-Hyun Lee; Joo Chun Yoon; Seung Hyun Kwon; Hee-Bum Kang; Mi-Jeong Kim; Jeong-Heon Cha; Young Jun Kim; Woo Jin Jun; Jae Myun Lee; Ho-Geun Yoon

Because the p300/CBP-mediated hyperacetylation of RelA (p65) is critical for nuclear factor-kappaB (NF-kappaB) activation, the attenuation of p65 acetylation is a potential molecular target for the prevention of chronic inflammation. During our ongoing screening study to identify natural compounds with histone acetyltransferase inhibitor (HATi) activity, we identified epigallocatechin-3-gallate (EGCG) as a novel HATi with global specificity for the majority of HAT enzymes but with no activity toward epigenetic enzymes including HDAC, SIRT1, and HMTase. At a dose of 100 micromol/L, EGCG abrogates p300-induced p65 acetylation in vitro and in vivo, increases the level of cytosolic IkappaBalpha, and suppresses tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. We also showed that EGCG prevents TNFalpha-induced p65 translocation to the nucleus, confirming that hyperacetylation is critical for NF-kappaB translocation as well as activity. Furthermore, EGCG treatment inhibited the acetylation of p65 and the expression of NF-kappaB target genes in response to diverse stimuli. Finally, EGCG reduced the binding of p300 to the promoter region of interleukin-6 gene with an increased recruitment of HDAC3, which highlights the importance of the balance between HATs and histone deacetylases in the NF-kappaB-mediated inflammatory signaling pathway. Importantly, EGCG at 50 micromol/L dose completely blocks EBV infection-induced cytokine expression and subsequently the EBV-induced B lymphocyte transformation. These results show the crucial role of acetylation in the development of inflammatory-related diseases.


Journal of Materials Chemistry | 2007

Antibody conjugated magnetic PLGA nanoparticles for diagnosis and treatment of breast cancer

Jaemoon Yang; Choong-Hwan Lee; Joseph Park; Sungbaek Seo; Eun-Kyung Lim; Yong Jin Song; Jin-Suck Suh; Ho-Geun Yoon; Yong-Min Huh; Seungjoo Haam

DOX–magnetic PLGA nanoparticles conjugated with well-tailored antibodies were synthesized for the detection and therapy of breast cancer. Magnetic nanocrystals embedded in polymeric nanoparticles did not inhibit the nanoparticle formulation or drug release kinetics. The multimodal nanoparticles demonstrated remarkable cancer cell affinity and ultrasensitivity via magnetic resonance imaging. Furthermore, the loaded anticancer drugs were released and sustained for three weeks.


Food and Chemical Toxicology | 2010

In vitro and in vivo hepatoprotective effects of the aqueous extract from Taraxacum officinale (dandelion) root against alcohol-induced oxidative stress

Yanghee You; Soo-Nam Yoo; Ho-Geun Yoon; Jeongjin Park; Yoo-Hyun Lee; S.H. Kim; Kyungtaek Oh; Jeongmin Lee; Hong-Yon Cho; Woojin Jun

The protective effects of Taraxacum officinale (dandelion) root against alcoholic liver damage were investigated in HepG2/2E1 cells and ICR mice. When an increase in the production of reactive oxygen species was induced by 300 mM ethanol in vitro, cell viability was drastically decreased by 39%. However, in the presence of hot water extract (TOH) from T. officinale root, no hepatocytic damage was observed in the cells treated with ethanol, while ethanol-extract (TOE) did not show potent hepatoprotective activity. Mice, which received TOH (1 g/kg bw/day) with ethanol revealed complete prevention of alcohol-induced hepatotoxicity as evidenced by the significant reductions of serum aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase activities compared to ethanol-alone administered mice. When compared to the ethanol-alone treated group, the mice receiving ethanol plus TOH exhibited significant increases in hepatic antioxidant activities, including catalase, glutathione-S-transferase, glutathione peroxidase, glutathione reductase, and glutathione. Furthermore, the amelioration of malondialdehyde levels indicated TOHs protective effects against liver damage mediated by alcohol in vivo. These results suggest that the aqueous extract of T. officinale root has protective action against alcohol-induced toxicity in the liver by elevating antioxidative potentials and decreasing lipid peroxidation.


Molecular Cancer Research | 2009

Gallic Acid Suppresses Lipopolysaccharide-Induced Nuclear Factor-κB Signaling by Preventing RelA Acetylation in A549 Lung Cancer Cells

Kyung-Chul Choi; Yoo-Hyun Lee; Myung Gu Jung; Seung Hyun Kwon; Mi-Jeong Kim; Woo Jin Jun; Jeongmin Lee; Jae Myun Lee; Ho-Geun Yoon

Although multiple studies have revealed that gallic acid plays an important role in the inhibition of malignant transformation, cancer development, and inflammation, the molecular mechanism of gallic acid in inflammatory diseases is still unclear. In this study, we identified gallic acid from Rosa rugosa as a histone acetyltransferase (HAT) inhibitor with global specificity for the majority of HAT enzymes, but with no activity toward epigenetic enzymes including sirtuin (silent mating type information regulation 2 homologue) 1 (S. cerevisiae), histone deacetylase, and histone methyltransferase. Enzyme kinetic studies indicated that gallic acid uncompetitively inhibits p300/CBP-dependent HAT activities. We found that gallic acid inhibits p300-induced p65 acetylation, both in vitro and in vivo, increases the level of cytosolic IκBα, prevents lipopolysaccharide (LPS)-induced p65 translocation to the nucleus, and suppresses LPS-induced nuclear factor-κB activation in A549 lung cancer cells. We have also shown that gallic acid treatment inhibits the acetylation of p65 and the LPS-induced serum levels of interleukin-6 in vivo. Importantly, gallic acid generally inhibited inflammatory responses caused by other stimuli, including LPS, IFN-γ, and interleukin-1β, and further downregulated the expression of nuclear factor-κB–regulated antiapoptotic genes. These results show the crucial role of acetylation in the development of inflammatory diseases. (Mol Cancer Res 2009;7(12):2011–21)


Journal of Biological Chemistry | 2008

Proto-oncogene FBI-1 (Pokemon/ZBTB7A) Represses Transcription of the Tumor Suppressor Rb Gene via Binding Competition with Sp1 and Recruitment of Co-repressors

Bu-Nam Jeon; Jung-Yoon Yoo; Won-Il Choi; Choong-Eun Lee; Ho-Geun Yoon; Man-Wook Hur

FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp –308 to –188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp –65 to –56) and GC-box 2 (bp –18 to –9), the latter of which is also bound by FBI-1. We found that FRE3 (bp –244 to –236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression.


Journal of Biological Chemistry | 2009

Interrelationship between Liver X Receptor α, Sterol Regulatory Element-binding Protein-1c, Peroxisome Proliferator-activated Receptor γ, and Small Heterodimer Partner in the Transcriptional Regulation of Glucokinase Gene Expression in Liver

Tae Hyun Kim; Hail Kim; Joo-Man Park; Seung-Soon Im; Jin-Sik Bae; Miyoung Kim; Ho-Geun Yoon; Ji-Young Cha; Kyung-Sup Kim; Yong-Ho Ahn

Liver glucokinase (LGK) plays an essential role in controlling blood glucose levels and maintaining cellular metabolic functions. Expression of LGK is induced mainly regulated by insulin through sterol regulatory element-binding protein-1c (SREBP-1c) as a mediator. Since LGK expression is known to be decreased in the liver of liver X receptor (LXR) knockout mice, we have investigated whether LGK might be directly activated by LXRα. Furthermore, we have studied interrelationship between transcription factors that control gene expression of LGK. In the current studies, we demonstrated that LXRα increased LGK expression in primary hepatocytes and that there is a functional LXR response element in the LGK gene promoter as shown by electrophoretic mobility shift and chromatin precipitation assay. In addition, our studies demonstrate that LXRα and insulin activation of the LGK gene promoter occurs through a multifaceted indirect mechanism. LXRα increases SREBP-1c expression and then insulin stimulates the processing of the membrane-bound precursor SREBP-1c protein, and it activates LGK expression through SREBP sites in its promoter. LXRα also activates the LGK promoter by increasing the transcriptional activity and induction of peroxisome proliferator-activated receptor (PPAR)-γ, which also stimulates LGK expression through a peroxisome proliferator-responsive element. This activation is tempered through a negative mechanism, where a small heterodimer partner (SHP) decreases LGK gene expression by inhibiting the transcriptional activity of LXRα and PPARγ by directly interacting with their common heterodimer partner RXRα. From these data, we propose a mechanism for LXRα in controlling the gene expression of LGK that involves activation through SREBP-1c and PPARγ and inhibition through SHP.


Cell Cycle | 2013

p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells

Nam Hee Kim; Yong Hoon Cha; Shi Eun Kang; Yoon Mi Lee; Inhan Lee; So Young Cha; Joo Kyung Ryu; Jung Min Na; Changbum Park; Ho-Geun Yoon; Gyeong-Ju Park; Jong In Yook; Hyun Sil Kim

p53 is a bona fide tumor suppressor gene whose loss of function marks the most common genetic alteration in human malignancy. Although the causal link between loss of p53 function and tumorigenesis has been clearly demonstrated, the mechanistic links by which loss of p53 potentiates oncogenic signaling are not fully understood. Recent evidence indicates that the microRNA-34 (miR-34) family, a transcriptional target of the p53, directly suppresses a set of canonical Wnt genes and Snail, resulting in p53-mediated suppression of Wnt signaling and the EMT process. In this study, we report that p53 regulates GSK-3β nuclear localization via miR-34-mediated suppression of Axin2 in colorectal cancer. Exogenous miR-34a decreases Axin2 UTR-reporter activity through multiple binding sites within the 5′ and 3′ UTR of Axin2. Suppression of Axin2 by p53 or miR-34 increases nuclear GSK-3β abundance and leads to decreased Snail expression in colorectal cancer cells. Conversely, expression of the non-coding UTR of Axin2 causes depletion of endogenous miR-34 via the miR-sponge effect together with increased Axin2 function, supporting that the RNA-RNA interactions with Axin2 transcripts act as an endogenous decoy for miR-34. Further, RNA transcripts of miR-34 target were correlated with Axin2 in clinical data set of colorectal cancer patients. Although the biological relevance of nuclear GSK-3 level has not been fully studied, our results demonstrate that the tumor suppressor p53/miR-34 axis plays a role in regulating nuclear GSK-3 levels and Wnt signaling through the non-coding UTR of Axin2 in colorectal cancer.


Molecular Cell | 2011

Reversible SUMOylation of TBL1-TBLR1 Regulates β-Catenin-Mediated Wnt Signaling

Hyo-Kyoung Choi; Kyung-Chul Choi; Jung-Yoon Yoo; Meiying Song; Suk Jin Ko; Chul Hoon Kim; Jin-Hyun Ahn; Kyung-Hee Chun; Jong In Yook; Ho-Geun Yoon

Dysregulation of Wnt signaling has been implicated in tumorigenesis. The role of Transducin β-like proteins TBL1-TBLR1 in the promotion of Wnt/β-catenin-mediated oncogenesis has recently been emphasized; however, the molecular basis of activation of Wnt signaling by the corepressor TBL1-TBLR1 is incompletely understood. Here, we show that both TBL1 and TBLR1 are SUMOylated in a Wnt signaling-dependent manner, and that this modification is selectively reversed by SUMO-specific protease I (SENP1). SUMOylation dismissed TBL1-TBLR1 from the nuclear hormone receptor corepressor (NCoR) complex, increased recruitment of the TBL1-TBLR1-β-catenin complex to the promoter of Wnt target genes, and consequently led to activation of Wnt signaling. Conversely, SENP1 decreased formation of the TBL1-TBLR1-β-catenin complex, leading to inhibition of β-catenin-mediated transcription. Importantly, inhibition of SUMOylation significantly decreased the tumorigenicity of SW480 colon cancer cells. Thus, our data reveal a mechanism for activation of Wnt signaling via the SUMOylation-dependent disassembly of the corepressor complex.


Biochemical and Biophysical Research Communications | 2011

Delphinidin, a specific inhibitor of histone acetyltransferase, suppresses inflammatory signaling via prevention of NF-κB acetylation in fibroblast-like synoviocyte MH7A cells.

Ah-Reum Seong; Jung-Yoon Yoo; Kyung-Chul Choi; Mee-Hee Lee; Yoo-Hyun Lee; Jeongmin Lee; Woojin Jun; S.H. Kim; Ho-Geun Yoon

Histone acetyltransferase (HAT) inhibitors (HATi) isolated from dietary compounds have been shown to suppress inflammatory signaling, which contributes to rheumatoid arthritis. Here, we identified a novel HATi in Punica granatum L. known as delphinidin (DP). DP did not affect the activity of other epigenetic enzymes (histone deacetylase, histone methyltransferase, or sirtuin1). DP specifically inhibited the HAT activities of p300/CBP. It also inhibited p65 acetylation in MH7A cells, a human rheumatoid arthritis synovial cell line. DP-induced hypoacetylation was accompanied by cytosolic accumulation of p65 and nuclear localization of IKBα. Accordingly, DP treatment inhibited TNFα-stimulated increases in NF-κB function and expression of NF-κB target genes in these cells. Importantly, DP suppressed lipopolysaccharide-induced pro-inflammatory cytokine expression in Jurkat T lymphocytes, demonstrating that HATi efficiently suppresses cytokine-mediated immune responses. Together, these results show that the HATi activity of DP counters anti-inflammatory signaling by blocking p65 acetylation and that this compound may be useful in preventing inflammatory arthritis.


Molecular Nutrition & Food Research | 2011

Gallic acid, a histone acetyltransferase inhibitor, suppresses β‐amyloid neurotoxicity by inhibiting microglial‐mediated neuroinflammation

Mi-Jeong Kim; Ah-Reum Seong; Jung-Yoon Yoo; Cheng-Hao Jin; Yoo-Hyun Lee; Young Jun Kim; Jeongmin Lee; Woo Jin Jun; Ho-Geun Yoon

SCOPE We examined the biological effect of gallic acid (GA) as a nuclear factor (NF)-κB acetyltransferase inhibitor on microglial-mediated β-amyloid neurotoxicity and restorative effects on the Aβ-induced cognitive dysfunction. METHODS AND RESULTS The protective effects of GA on the survival of neuronal cells were assessed with an MTT assay and a co-culture system. For the co-culture experiments, both BV-2 and primary microglia cells were treated with GA prior to Aβ stimulation, and conditioned media were transferred to Neuro-2A cells. The mRNA and protein levels of inflammatory cytokines in both microglia and Neuro-2A cells were assessed with real-time polymerase chain reaction and western blotting. Inhibition of nuclear factor kappa B (NF-κB) acetylation with GA treatment resulted in reduced cytokine production in microglia cells and protection of neuronal cells from Aβ-induced neurotoxicity. Furthermore, we observed a restorative effect of GA on Aβ-induced cognitive dysfunction in mice with Y-maze and passive avoidance tests. Finally, we found that GA treatment efficiently blocked neuronal cell death by downregulating the expression of cytokines and the in vivo levels of NF-κB acetylation. CONCLUSION These results suggest that selective inhibition of NF-κB acetylation by the histone acetyltransferase inhibitor GA is a possible therapeutic approach for alleviating the inflammatory progression of Alzheimer disease.

Collaboration


Dive into the Ho-Geun Yoon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Woojin Jun

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanghee You

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge