Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyo Sug Lee is active.

Publication


Featured researches published by Hyo Sug Lee.


Energy and Environmental Science | 2013

Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors

Shyue Ping Ong; Yifei Mo; William Davidson Richards; Lincoln J. Miara; Hyo Sug Lee; Gerbrand Ceder

We present an investigation of the phase stability, electrochemical stability and Li+ conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors using first principles calculations. The Li10GeP2S12 (LGPS) superionic conductor has the highest Li+ conductivity reported to date, with excellent electrochemical performance demonstrated in a Li-ion rechargeable battery. Our results show that isovalent cation substitutions of Ge4+ have a small effect on the relevant intrinsic properties, with Li10SiP2S12 and Li10SnP2S12 having similar phase stability, electrochemical stability and Li+ conductivity as LGPS. Aliovalent cation substitutions (M = Al or P) with compensating changes in the Li+ concentration also have a small effect on the Li+ conductivity in this structure. Anion substitutions, however, have a much larger effect on these properties. The oxygen-substituted Li10MP2O12 compounds are predicted not to be stable (with equilibrium decomposition energies >90 meV per atom) and have much lower Li+ conductivities than their sulfide counterparts. The selenium-substituted Li10MP2Se12 compounds, on the other hand, show a marginal improvement in conductivity, but at the expense of reduced electrochemical stability. We also studied the effect of lattice parameter changes on the Li+ conductivity and found the same asymmetry in behavior between increases and decreases in the lattice parameters, i.e., decreases in the lattice parameters lower the Li+ conductivity significantly, while increases in the lattice parameters increase the Li+ conductivity only marginally. Based on these results, we conclude that the size of the S2− is near optimal for Li+ conduction in this structural framework.


Nature Communications | 2016

Discovery of abnormal lithium-storage sites in molybdenum dioxide electrodes

Jeong Kuk Shon; Hyo Sug Lee; Gwi Ok Park; Jeongbae Yoon; Eunjun Park; Gyeong Su Park; Soo Sung Kong; Mingshi Jin; Jae-Man Choi; Hyuk Chang; Seok-Gwang Doo; Ji Man Kim; Won-Sub Yoon; Chanho Pak; Hansu Kim; Galen D. Stucky

Developing electrode materials with high-energy densities is important for the development of lithium-ion batteries. Here, we demonstrate a mesoporous molybdenum dioxide material with abnormal lithium-storage sites, which exhibits a discharge capacity of 1,814 mAh g−1 for the first cycle, more than twice its theoretical value, and maintains its initial capacity after 50 cycles. Contrary to previous reports, we find that a mechanism for the high and reversible lithium-storage capacity of the mesoporous molybdenum dioxide electrode is not based on a conversion reaction. Insight into the electrochemical results, obtained by in situ X-ray absorption, scanning transmission electron microscopy analysis combined with electron energy loss spectroscopy and computational modelling indicates that the nanoscale pore engineering of this transition metal oxide enables an unexpected electrochemical mass storage reaction mechanism, and may provide a strategy for the design of cation storage materials for battery systems.


Cytogenetic and Genome Research | 2012

Molecular and Clinical Characteristics of 26 Cases with Structural Y Chromosome Aberrations

J.W. Kim; Sung Yoon Park; Hyun-Mee Ryu; D.-E. Lee; Bom Yi Lee; Shin Y. Kim; Y.-S. Park; Hyo Sug Lee; Ju Tae Seo

Structural abnormalities include various types of translocations, inversions, deletions, duplications and isochromosomes. Structural abnormalities of the Y chromosome are estimated to affect less than 1% of the newborn male population and are particularly hazardous for male reproductive function. The objective of this study was to characterize a group of patients with structural abnormalities of the Y chromosome. All patients who visited our laboratory between 2007 and 2010 underwent cytogenetic investigations. Among these, we detected 26 patients with structural abnormalities of the Y chromosome. To confirm the structural Y chromosome alterations, we used special bandings, FISH and multiplex PCR to detect Y chromosome microdeletions. Of the 26 patients presented here, 11 had an isodicentric Y chromosome, 7 had an inversion, 3 had a translocation, 2 had a derivative, 2 had a Yqs and 1 had a deletion. Sixteen were diagnosed with azoospermia, 8 as normal fertile males and 1 as a man who was unable to donate semen due to mental retardation. One of the patients having 45,X/46,X,idic(Y) was reported to be phenotypically female with primary amenorrhea and without uterus. Deletions of the AZFbc region were correlated with the sperm concentration (p < 0.05), but no correlation with the levels of FSH, LH, testosterone, prolactin and estradiol were found. The present report shows that the precise identification of structural Y chromosome aberrations may be clinically important for genetic counseling and assisted reproductive technology treatment.


Soft Matter | 2013

Graphene surface induced specific self-assembly of poly(3-hexylthiophene) for nanohybrid optoelectronics: from first-principles calculation to experimental characterizations

Do Hwan Kim; Hyo Sug Lee; Hyeon-Jin Shin; Yoon-Su Bae; Kang-Hyuck Lee; Sang-Woo Kim; Dukhyun Choi; Jae-Young Choi

We demonstrate a specific chain alignment of π-conjugated polythiophenes on the graphene monolayer via first-principles calculation and experimental characterizations. The effects of alkyl chain and thiophene backbone in poly(3-hexylthiophene) (P3HT) on the specific binding energy and molecular configuration on the graphene monolayer are independently investigated. Due to specific π–π interaction and van der Waals interaction between P3HT and graphene monolayer, two different configurations (edge-on and face-on) of P3HT are formed on the graphene, while only edge-on configuration of P3HT is found on the indium tin oxide (ITO). These behaviors are verified by using atomic force microscopy (AFM) and transmission electron microscopy (TEM). We also explore the molecular orientation of P3HT chains on the graphene using 2D grazing incidence X-ray diffraction (GIXD) to obtain molecular orientation features over a large area. Our results will provide a strategy to create next-generation polymer–graphene nanohybrid optoelectronic devices.


ACS Nano | 2012

Design of a polymer-carbon nanohybrid junction by interface modeling for efficient printed transistors.

Do Hwan Kim; Hyeon-Jin Shin; Hyo Sug Lee; Jiyoul Lee; Bang-Lin Lee; Wi Hyoung Lee; Jong-Hwa Lee; Kilwon Cho; Woo-Jae Kim; Sang Yoon Lee; Jae-Young Choi; Jong Min Kim

Molecularly hybridized materials composed of polymer semiconductors (PSCs) and single-walled carbon nanotubes (SWNTs) may provide a new way to exploit an advantageous combination of semiconductors, which yields electrical properties that are not available in a single-component system. We demonstrate for the first time high-performance inkjet-printed hybrid thin film transistors with an electrically engineered heterostructure by using specially designed PSCs and semiconducting SWNTs (sc-SWNTs) whose system achieved a high mobility of 0.23 cm(2) V(-1) s(-1), no V(on) shift, and a low off-current. PSCs were designed by calculation of the density of states of the backbone structure, which was related to charge transfer. The sc-SWNTs were prepared by a single cascade of the density-induced separation method. We also revealed that the binding energy between PSCs and sc-SWNTs was strongly affected by the side-chain length of PSCs, leading to the formation of a homogeneous nanohybrid film. The understanding of electrostatic interactions in the heterostructure and experimental results suggests criteria for the design of nanohybrid heterostructures.


ACS Nano | 2015

Modulation of the Dirac point voltage of graphene by ion-gel dielectrics and its application to soft electronic devices.

Un Jeong Kim; Tae Geun Kim; Youngseon Shim; Yeonsang Park; Chang-won Lee; Tae-Ho Kim; Hyo Sug Lee; Dae Young Chung; Jineun Kihm; Young Geun Roh; Jaesoong Lee; Hyungbin Son; Sangsig Kim; Jaehyun Hur; Sung Woo Hwang

We investigated systematic modulation of the Dirac point voltage of graphene transistors by changing the type of ionic liquid used as a main gate dielectric component. Ion gels were formed from ionic liquids and a non-triblock-copolymer-based binder involving UV irradiation. With a fixed cation (anion), the Dirac point voltage shifted to a higher voltage as the size of anion (cation) increased. Mechanisms for modulation of the Dirac point voltage of graphene transistors by designing ionic liquids were fully understood using molecular dynamics simulations, which excellently matched our experimental results. It was found that the ion sizes and molecular structures play an essential role in the modulation of the Dirac point voltage of the graphene. Through control of the position of their Dirac point voltages on the basis of our findings, complementary metal-oxide-semiconductor (CMOS)-like graphene-based inverters using two different ionic liquids worked perfectly even at a very low source voltage (V(DD) = 1 mV), which was not possible for previous works. These results can be broadly applied in the development of low-power-consumption, flexible/stretchable, CMOS-like graphene-based electronic devices in the future.


Angewandte Chemie | 2014

Nanocrystalline-Graphene-Tailored Hexagonal Boron Nitride Thin Films†

Kang Hyuck Lee; Hyeon-Jin Shin; Brijesh Kumar; Han Sol Kim; Jinyeong Lee; Ravi Bhatia; Sang-Hyeob Kim; Inyeal Lee; Hyo Sug Lee; Gil-Ho Kim; Ji-Beom Yoo; Jae-Young Choi; Sang-Woo Kim

Unintentionally formed nanocrystalline graphene (nc-G) can act as a useful seed for the large-area synthesis of a hexagonal boron nitride (h-BN) thin film with an atomically flat surface that is comparable to that of exfoliated single-crystal h-BN. A wafer-scale dielectric h-BN thin film was successfully synthesized on a bare sapphire substrate by assistance of nc-G, which prevented structural deformations in a chemical vapor deposition process. The growth mechanism of this nc-G-tailored h-BN thin film was systematically analyzed. This approach provides a novel method for preparing high-quality two-dimensional materials on a large surface.


Scientific Reports | 2017

Property database for single-element doping in ZnO obtained by automated first-principles calculations.

Kanghoon Yim; Joohee Lee; Dongheon Lee; Miso Lee; Eunae Cho; Hyo Sug Lee; Ho-Hyun Nahm; Seungwu Han

Throughout the past decades, doped-ZnO has been widely used in various optical, electrical, magnetic, and energy devices. While almost every element in the Periodic Table was doped in ZnO, the systematic computational study is still limited to a small number of dopants, which may hinder a firm understanding of experimental observations. In this report, we systematically calculate the single-element doping property of ZnO using first-principles calculations. We develop an automation code that enables efficient and reliable high-throughput calculations on thousands of possible dopant configurations. As a result, we obtain formation-energy diagrams for total 61 dopants, ranging from Li to Bi. Furthermore, we evaluate each dopant in terms of n-type/p-type behaviors by identifying the major dopant configurations and calculating carrier concentrations at a specific dopant density. The existence of localized magnetic moment is also examined for spintronic applications. The property database obtained here for doped ZnO will serve as a useful reference in engineering the material property of ZnO through doping.


IEEE Transactions on Electronics Packaging Manufacturing | 2009

Chemical and Mechanical Analysis of PCB Surface Treated by Argon Plasma to Enhance Interfacial Adhesion

Dong Kil Shin; Hyo Sug Lee; Jay Im

Plasma treatment of printed circuit board (PCB) is a common step in the electronic packaging processes in order to modify the surface and enhance its adhesion to molding compound. In this paper, PCB surface modifications resulting from plasma treatment were investigated by chemical and mechanical analysis methods. The PCB substrate in consideration was for multichip package, consisting of a core layer sandwiched by solder resist (SR) material, which in turn was composed of epoxy, acryl resins, and several kinds of fillers. Argon was employed as a plasma gas and the number of times that the plasma treatment was applied was chosen as a variable to estimate the effect of repeated exposure to the SR surface during the manufacturing process. The resulting surface conditions were analyzed using roughness measurement, water contact angle measurement, X-ray photoelectron spectroscopy (XPS), nano-indentation, and nano-scratch test method. Comprehensive analyses made it possible to understand the characteristics of the effect of plasma on the PCB surface, i.e., SR material. It was found that the surface roughness after the one-time plasma treatment increased from ~ 62 to ~ 90nm, then decreased more or less to the initial level after three and eight times of repeated treatments. These roughness trends were explained by cleaning out contaminants accumulated in the surface crevices and then preferentially removing or melting away a thin resin layer from the peaks on the surface. The plasma treatment decreased the contact angle significantly and increased work of adhesion. Chemical analysis of these surfaces by XPS showed that the C-C bonds in SR were broken, the population of the polar groups such as O-H, C=O, and COOH increased, and the oxygen content increased. The polar groups increased surface energy, and resulted in increased PCB adhesion with the epoxy molding compound (EMC). Mechanical analysis by nano-indentation and nano-scratch test showed that the surface became soft and weak if plasma treatment was too excessive. In this case, a plasma affected zone corresponding to the severe C-C bond breakage was formed near the surface and the adhesion with EMC suffered. Therefore, caution should be exercised in determining the degree of plasma treatment needed.


Scientific Reports | 2015

A room-temperature sodium rechargeable battery using an SO2-based nonflammable inorganic liquid catholyte.

Goojin Jeong; Hansu Kim; Hyo Sug Lee; Young-Kyu Han; Jong Hwan Park; Jae Hwan Jeon; Juhye Song; Keonjoon Lee; Taeeun Yim; Ki Jae Kim; Hyukjae Lee; Young-Jun Kim; Hun-Joon Sohn

Sodium rechargeable batteries can be excellent alternatives to replace lithium rechargeable ones because of the high abundance and low cost of sodium; however, there is a need to further improve the battery performance, cost-effectiveness, and safety for practical use. Here we demonstrate a new type of room-temperature and high-energy density sodium rechargeable battery using an SO2-based inorganic molten complex catholyte, which showed a discharge capacity of 153 mAh g−1 based on the mass of catholyte and carbon electrode with an operating voltage of 3 V, good rate capability and excellent cycle performance over 300 cycles. In particular, non-flammability and intrinsic self-regeneration mechanism of the inorganic liquid electrolyte presented here can accelerate the realization of commercialized Na rechargeable battery system with outstanding reliability. Given that high performance and unique properties of Na–SO2 rechargeable battery, it can be another promising candidate for next generation energy storage system.

Collaboration


Dive into the Hyo Sug Lee's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerbrand Ceder

University of California

View shared research outputs
Top Co-Authors

Avatar

Shyue Ping Ong

University of California

View shared research outputs
Top Co-Authors

Avatar

Hyuk Soon Choi

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge