Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyo-Yang Ahn is active.

Publication


Featured researches published by Hyo-Yang Ahn.


Journal of the American Chemical Society | 2010

High-Fidelity Hydrophilic Probe for Two-Photon Fluorescence Lysosomal Imaging

Xuhua Wang; Dao M. Nguyen; Ciceron O. Yanez; Luis Rodriguez; Hyo-Yang Ahn; Mykhailo V. Bondar; Kevin D. Belfield

The synthesis and characterization of a novel two-photon-absorbing fluorene derivative, LT1, selective for the lysosomes of HCT 116 cancer cells, is reported. Linear and nonlinear photophysical and photochemical properties of the probe were investigated to evaluate the potential of the probe for two-photon fluorescence microscopy (2PFM) lysosomal imaging. The cytotoxicity of the probe was investigated to evaluate the potential of using this probe for live two-photon fluorescence biological imaging applications. Colocalization studies of the probe with commercial Lysotracker Red in HCT 116 cells demonstrated the specific localization of the probe in the lysosomes with an extremely high colocalization coefficient (0.96). A figure of merit was introduced to allow comparison between probes. LT1 has a number of properties that far exceed those of commercial lysotracker probes, including higher two-photon absorption cross sections, good fluorescence quantum yield, and, importantly, high photostability, all resulting in a superior figure of merit. 2PFM was used to demonstrate lysosomal tracking with LT1.


Journal of the American Chemical Society | 2012

Two-photon fluorescence microscopy imaging of cellular oxidative stress using profluorescent nitroxides.

Hyo-Yang Ahn; Kathryn E. Fairfull-Smith; Benjamin J. Morrow; Vanessa Lussini; Bosung Kim; Mykhailo V. Bondar; Steven E. Bottle; Kevin D. Belfield

A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore’s usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H2O2-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially “light up” in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.


Journal of Organic Chemistry | 2010

Donor−Acceptor−Donor Fluorene Derivatives for Two-Photon Fluorescence Lysosomal Imaging

Sheng Yao; Hyo-Yang Ahn; Xuhua Wang; Jie Fu; Eric W. Van Stryland; David J. Hagan; Kevin D. Belfield

As part of a strategy to achieve large two-photon absorptivity in fluorene-based probes, a series of donor-acceptor-donor (D-A-D) type derivatives were synthesized and their two-photon absorption (2PA) properties investigated. The synthesis of D-A-D fluorophores was achieved by efficient preparation of key intermediates for the introduction of central electron acceptor groups. To accomplish the synthesis of two of the new derivatives, a high-yield method for a one-step direct dibromomethylation of phenyl sulfide was developed. The linear and nonlinear optical properties, including UV-vis absorption, fluorescence emission, fluorescence anisotropy, and two-photon absorption (2PA), of the new D-A-D compounds were measured and compared to their D-A or D-D counterparts. Fully conjugated acceptor moieties in the center of the D-A-D fluorophore led to the greatest increase in the 2PA cross section, while weakly conjugated central acceptors exhibited only a modest increase in the 2PA cross section relative to D-A diploar analogs. Encapsulation of the new probes in Pluronic F 108NF micelles, and subsequent incubation in HCT 116 cells, resulted in very high lysosomal colocalization (>0.98 colocalization coefficient) relative to commercial Lysotracker Red, making the micelle-encapsulated dyes particularly attractive as fluorescent probes for two-photon fluorescence microscopy lysosomal imaging.


ACS Applied Materials & Interfaces | 2012

Near-Infrared Emitting Squaraine Dyes with High 2PA Cross Sections for Multiphoton Fluorescence Imaging

Hyo-Yang Ahn; Sheng Yao; Xuhua Wang; Kevin D. Belfield

Designed to achieve high two-photon absorptivity, new near-infrared (NIR) emitting squaraine dyes, (E)-2-(1-(2-(2-methoxyethoxy)ethyl)-5-(3,4,5-trimethoxystyryl)-1H-pyrrol-2-yl)-4-(1-(2-(2-methoxyethoxy)ethyl)-5-(3,4,5-trimethoxystyryl)-2H-pyrrolium-2-ylidene)-3-oxocyclobut-1-enolate (1) and (Z)-2-(4-(dibutylamino)-2-hydroxyphenyl)-4-(4-(dibutyliminio)-2-hydroxycyclohexa-2,5-dienylidene)-3-oxocyclobut-1-enolate (2), were synthesized and characterized. Their linear photophysical properties were investigated via UV-visible absorption spectroscopy and fluorescence spectroscopy in various solvents, while their nonlinear photophysical properties were investigated using a combination of two-photon induced fluorescence and open aperture z-scan methods. Squaraine 1 exhibited a high two-photon absorption (2PA) cross-section (δ2PA), ∼20 000 GM at 800 nm, and high photostability with the photochemical decomposition quantum yield one order of magnitude lower than Cy 5, a commercially available pentamethine cyanine NIR dye. The cytotoxicity of the squaraine dyes were evaluated in HCT 116 and COS 7 cell lines to assess the potential of these probes for biomedical imaging. The viability of both cell lines was maintained above 80% at dye concentrations up to 30 μM, indicating good biocompatibility of the probes. Finally, one-photon fluorescence microscopy (1PFM) and two-photon fluorescence microscopy (2PFM) imaging was accomplished after incubation of micelle-encapsulated squaraine probes with HCT 116 and COS 7 cells, demonstrating their potential in 2PFM bioimaging.


Langmuir | 2012

Two-photon Absorption Enhancement of Polymer-templated Porphyrin-based J-Aggregates

Sanchita Biswas; Hyo-Yang Ahn; Mykhailo V. Bondar; Kevin D. Belfield

Supramolecular structures based on organized assemblies of macrocyclic chromophores, particularly porphyrin-based dyes, have attracted widespread interest as components of molecular devices with potential applications in molecular electronics, artificial light harvesting, and pharmacology. We report the formation of J-aggregates of two porphyrin-based dyes, 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TSPP, 4) and an amino tris-sulfonate analogue (5) in water using a functionalized norbornene-based homopolymer, synthesized by ring-opening metathesis polymerization (ROMP). Ionic interactions of the cationic side chains (ammonium groups) of the polymer under acidic conditions with the negatively charged sulfonate groups of the porphyrins facilitated polymer template enhanced J-aggregation of the porphyrin dyes. J-Aggregation behavior was investigated photophysically by UV-vis absorption along with steady-state and time-resolved fluorescence studies. Two-photon absorption (2PA) was enhanced by about an order of magnitude for the J-aggregated TSPP relative to its free base. Significantly, the 2PA cross section of the polymer-templated TSPP J-aggregate was up to three times higher than the J-aggregated TSPP in the absence of the polymer template while the 2PA cross section for polymer-templated J-aggregates of 5 increased substantially, up to ca. 10,000 GM, suggesting a prominent role of polymer-templating to facilitate porphyrin aggregation and greatly enhance nonlinear absorption.


ACS Applied Materials & Interfaces | 2010

Two-Photon Excited Fluorescence of a Conjugated Polyelectrolyte and Its Application in Cell Imaging

Anand Parthasarathy; Hyo-Yang Ahn; Kevin D. Belfield; Kirk S. Schanze

The two-photon excited fluorescence of a conjugated polyelectrolyte (CPE), PPESO3, was studied in methanol and in water. The photophysical and amplified quenching properties of the CPE observed under two-photon excitation were comparable to the results obtained under one-photon excited conditions. Two-photon fluorescence microscopy performed with PPESO3-coated silica nanoparticles in HeLa cells provided images with significantly improved resolution compared to one-photon microscopy, demonstrating the utility of the CPE as a fluorescent probe in two-photon fluorescence cell imaging.


Biomacromolecules | 2011

Integrin-Targeting Block Copolymer Probes for Two-Photon Fluorescence Bioimaging

Sanchita Biswas; Xuhua Wang; Alma R. Morales; Hyo-Yang Ahn; Kevin D. Belfield

Targeted molecular imaging with two-photon fluorescence microscopy (2PFM) is a powerful technique for chemical biology and, potentially, for noninvasive diagnosis and treatment of a number of diseases. The synthesis, photophysical studies, and bioimaging are reported for a versatile norbornene-based block copolymer multifunctional scaffold containing biocompatible (PEG), two-photon fluorescent dyes (fluorenyl) and targeting (cyclic-RGD peptide) moieties. The two bioconjugates, containing two different fluorenyl dyes and cRGDfK covalently attached to the polymer probe, formed a spherical micelle and self-assembled structure in water, for which size was analyzed by transmission electron microscopy (TEM) and dynamic light scattering (DLS). Cell viability and 2PFM imaging of human epithelial U87MG cell lines that overexpress α(v)β(3) integrin was performed via incubation with the new probes, along with negative control studies using MCF-7 breast cancer cells and blocking experiments. 2PFM microscopy confirmed the high selectivity of the biocompatible probe in the integrin-rich area in the U87MF cells while blocking as well as negative control MCF-7 experiments confirmed the integrin-targeting ability of the new probes.


Biomedical Optics Express | 2010

Folate receptor targeting silica nanoparticle probe for two-photon fluorescence bioimaging.

Xuhua Wang; Sheng Yao; Hyo-Yang Ahn; Yuanwei Zhang; Mykhailo V. Bondar; Joseph A. Torres; Kevin D. Belfield

Narrow dispersity organically modified silica nanoparticles (SiNPs), diameter ~30 nm, entrapping a hydrophobic two-photon absorbing fluorenyl dye, were synthesized by hydrolysis of triethoxyvinylsilane and (3-aminopropyl)triethoxysilane in the nonpolar core of Aerosol-OT micelles. The surface of the SiNPs were functionalized with folic acid, to specifically deliver the probe to folate receptor (FR) over-expressing Hela cells, making these folate two-photon dye-doped SiNPs potential candidates as probes for two-photon fluorescence microscopy (2PFM) bioimaging. In vitro studies using FR over-expressing Hela cells and low FR expressing MG63 cells demonstrated specific cellular uptake of the functionalized nanoparticles. One-photon fluorescence microscopy (1PFM) imaging, 2PFM imaging, and two-photon fluorescence lifetime microscopy (2P-FLIM) imaging of Hela cells incubated with folate-modified two-photon dye-doped SiNPs were demonstrated.


ACS Applied Materials & Interfaces | 2010

Novel hydrophilic bis(1,2,3-triazolyl)fluorenyl probe for in vitro zinc ion sensing.

Dao M. Nguyen; Xuhua Wang; Hyo-Yang Ahn; Luis Rodriguez; M. V. Bondar; Kevin D. Belfield

A hydrophilic bis(1,2,3-triazolyl)fluorene derivative was synthesized as a multi-photon-absorbing, zinc-ion-sensing fluorescent probe. The fluorescence response was approximately five-fold greater in presence of Zn(2+), resulting in a large binding constant (1 × 10(9)) for a 1:2 ligand to zinc complex. A four-fold increase in the two-photon absorption cross section was achieved upon binding Zn(2+). In vitro two-photon fluorescence microscopy imaging revealed a significant fluorescence increase upon introduction of Zn(2+) into HeLa cells and reversible Zn(2+) binding, demonstrating the potential of this probe for zinc ion sensing.


Optics Express | 2009

Femtosecond two-photon absorption measurements based on the accumulative photo-thermal effect and the Rayleigh interferometer.

Luis Rodriguez; Hyo-Yang Ahn; Kevin D. Belfield

A rapid, straightforward method for measuring the two-photon absorption cross sections in liquid samples based on both the accumulative photo-thermal effect and the Rayleigh interferometery is described and demonstrated. This technique combines the sensitivity of the thermal lens approach and the accuracy of interferometry techniques. Focusing a high repetition rate laser beam in the sample, generating a localized change in its refractive index, induces the photo-thermal phase shift. By recording and processing two interference patterns, this technique allows the rapid estimation of the two-photon absorption cross section of the sample. Significantly, the experimental results demonstrate that this new method can be used with both fluorescent and non-fluorescent samples.

Collaboration


Dive into the Hyo-Yang Ahn's collaboration.

Top Co-Authors

Avatar

Kevin D. Belfield

New Jersey Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Xuhua Wang

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Sheng Yao

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Mykhailo V. Bondar

National Academy of Sciences of Ukraine

View shared research outputs
Top Co-Authors

Avatar

Ciceron O. Yanez

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Carolina D. Andrade

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Luis Rodriguez

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Bosung Kim

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Dao M. Nguyen

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Sanchita Biswas

Louisiana State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge