HyunCheol Seo
Kyungpook National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by HyunCheol Seo.
Journal of Sensors | 2016
Awais Ahmad; M. Mazhar Rathore; Anand Paul; Won-Hwa Hong; HyunCheol Seo
Over the last few decades, several advancements in the field of smart environment gained importance, so the experts can analyze ideas for smart building based on embedded systems to minimize the expense and energy conservation. Therefore, propelling the concept of smart home toward smart building, several challenges of power, communication, and sensors’ connectivity can be seen. Such challenges distort the interconnectivity between different technologies, such as Bluetooth and ZigBee, making it possible to provide the continuous connectivity among different objects such as sensors, actuators, home appliances, and cell phones. Therefore, this paper presents the concept of smart building based on embedded systems that enhance low power mobile sensors for sensing discrete events in embedded systems. The proposed scheme comprises system architecture that welcomes all the mobile sensors to communicate with each other using a single platform service. The proposed system enhances the concept of smart building in three stages (i.e., visualization, data analysis, and application). For low power mobile sensors, we propose a communication model, which provides a common medium for communication. Finally, the results show that the proposed system architecture efficiently processes, analyzes, and integrates different datasets efficiently and triggers actions to provide safety measurements for the elderly, patients, and others.
Journal of Sensor and Actuator Networks | 2018
Faisal Saeed; Anand Paul; Abdul Rehman; Won-Hwa Hong; HyunCheol Seo
Fires usually occur in homes because of carelessness and changes in environmental conditions. They cause threats to the residential community and may result in human death and property damage. Consequently, house fires must be detected early to prevent these types of threats. The immediate notification of a fire is the most critical issue in domestic fire detection systems. Fire detection systems using wireless sensor networks sometimes do not detect a fire as a consequence of sensor failure. Wireless sensor networks (WSN) consist of tiny, cheap, and low-power sensor devices that have the ability to sense the environment and can provide real-time fire detection with high accuracy. In this paper, we designed and evaluated a wireless sensor network using multiple sensors for early detection of house fires. In addition, we used the Global System for Mobile Communications (GSM) to avoid false alarms. To test the results of our fire detection system, we simulated a fire in a smart home using the Fire Dynamics Simulator and a language program. The simulation results showed that our system is able to detect early fire, even when a sensor is not working, while keeping the energy consumption of the sensors at an acceptable level.
Multimedia Tools and Applications | 2017
M. Mazhar Rathore; Awais Ahmad; Anand Paul; Won-Hwa Hong; HyunCheol Seo
Social media has drastically entered into a new concept by empowering people to publish their data along with their locations in order to provide benefits to the community and the country overall. There is a significant increase in the use of geosocial networks, such as Twitter, Facebook, Foursquare, and Flickr. Therefore, people worldwide can now voice their opinion, report an event instantly, and connect with others while sharing their views. Thus, geosocial network data provides full information on human current trends in terms of behavior, lifestyle, incidents and events, disasters, current medical infections, and much more with respect to location. Hence, current geosocial media can serve as data assets for countries and their government by analyzing geosocial data in a real time. However, there are millions of geosocial network users who generate terabytes of heterogeneous data with a variety of information every day and at high speed; such information is called “Big Data.” Analyzing such a significant amount of data and making real-time decisions regarding event detection is a challenging task. Therefore, in this paper, we propose an efficient system for exploring geosocial networks while harvesting data in order to make real-time decisions while detecting various events. A novel system architecture is proposed and implemented in a real environment in order to process an abundant amount of various social network data to monitor Earth events, incidents, medical diseases, user trends, and views to make future real-time decisions and facilitate future planning. The proposed system consists of five layers, i.e., data collection, data processing, application, communication, and data storage. The system deploys Spark at the top of the Hadoop ecosystem to run a real-time analysis. Twitter and Flickr data are analyzed using the proposed architecture in order to identify current events or disasters, such as earthquakes, fires, Ebola virus contagion, and snow. The system is evaluated on the Tweeter’s data by considering the recent earthquake detection occurred in New Zealand. The system is also evaluated with respect to efficiency while considering system throughput on large datasets. We prove that the system has higher throughput and is capable of analyzing a huge amount of geosocial network data at a real time while detecting any event.
Journal of the Korean housing association | 2012
HyunCheol Seo; Won-Hwa Hong; Gyeong-Mok Nam
In this paper, we draws tendency of the electricity consumption in residential buildings according to inhabitants Composition types and the level of incomes. it is necessary to reduce energy cost and keep energy security through the electricity demand forecasting and management technology. Progressive social change such as increases of single household, the aging of society, increases in the income level will replace the existing residential electricity demand pattern. However, Only with conventional methods that using only the energy consumption per-unit area are based on Energy final consumption data can not respond to those social and environmental change. To develop electricity demand estimation model that can cope flexibly to changes in the social and environmental, In this paper researches propensity of electricity consumption according to the type of residents configuration, the level of income. First, we typed form of inhabitants in residential that existed in Korea. after that we calculated hourly electricity consumption for each type through National Time-Use Survey performed at the National Statistical Office with considering overlapping behavior. Household appliances and retention standards according to income level is also considered.
Future Generation Computer Systems | 2017
M. Mazhar Rathore; Anand Paul; Awais Ahmad; Naveen Chilamkurti; Won-Hwa Hong; HyunCheol Seo
Abstract The recent development in the technology brings the concept of Smart City that is achieved through real-time city related intelligent decisions by analyzing the data harvested from various smart systems in the city using millions of sensors and devices connected over the Internet, termed as Internet of Things (IoT). These devices generate the overwhelming volume of high-speed streaming data, termed as Big Data. However, the generation of city data at a remote location and then transmitting it to central city servers for analysis purpose raises the concerns of security and privacy. On the other hand, providing security to such Big Data streaming requires a high-speed security system that can work in a real-time environment without providing any delay that may slow down the overall performance of the Smart City System. To overthrown these challenges, in this paper, we proposed an efficient and real-time Smart City security system by providing strong intrusion detection at intelligent city building (ICB) and also a security protocol to protect the communication between the remote smart system(RSS)/User and the city analysis building, i.e., ICB. The proposed communication security protocol consists of various phases, i.e., registration phase, session key exchange phase, session key revocation phase, and data transmission phases from RSS to ICB as well as from User to ICB. Vast security analyses are performed to evaluate the credibility of the system. The proposed system is also evaluated on efficiency in terms of computation cost and throughput of overall functions used in the system. The system’s evaluation and the comparative study with existing system show that the prosed system is secure, more efficient, and able to work in a real-time, high-speed Smart City environment.
Archive | 2017
Deblina Bhattacharjee; Anand Paul; Won-Hwa Hong; HyunCheol Seo; S. Karthik
The use of unmanned aerial vehicle (UAV) during emergency response of a disaster has been widespread in recent years and the terrain images captured by the cameras on board these vehicles are significant sources of information for such disaster monitoring operations. Thus, analyzing such images are important for assessing the terrain of interest during such emergency response operations. Further, these UAVs are mainly used in disaster monitoring systems for the automated deployment of sensor nodes in real time. Therefore, deploying and localizing the wireless sensor nodes optimally, only in the regions of interest that are identified by segmenting the images captured by UAVs, hold paramount significance thereby effecting their performance. In this paper, the highly effective nature-inspired Plant Growth Simulation Algorithm (PGSA) has been applied for the segmentation of such terrestrial images and also for the localization of the deployed sensor nodes. The problem is formulated as a multi-dimensional optimization problem and PGSA has been used to solve it. Furthermore, the proposed method has been compared to other existing evolutionary methods and simulation results show that PGSA gives better performance with respect to both speed and accuracy unlike other techniques in literature.
Sustainable Cities and Society | 2017
M. Mazhar Rathore; Anand Paul; Won-Hwa Hong; HyunCheol Seo; Imtiaz Awan; Sharjil Saeed
Sustainability | 2017
Anandkumar Balasubramaniam; Anand Paul; Won-Hwa Hong; HyunCheol Seo; Jeong Hong Kim
Architecture and Civil Engineering 2016 | 2016
Jin-woong Son; HyunCheol Seo; Won-Hwa Hong
Sustainable Cities and Society | 2019
Sadia Din; Anand Paul; Won-Hwa Hong; HyunCheol Seo