Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyuneui Lim is active.

Publication


Featured researches published by Hyuneui Lim.


ACS Nano | 2014

Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins

Jonghwa Park; Youngoh Lee; Jaehyung Hong; Minjeong Ha; Youngdo Jung; Hyuneui Lim; Sung Youb Kim; Hyunhyub Ko

The development of flexible electronic skins with high sensitivities and multimodal sensing capabilities is of great interest for applications ranging from human healthcare monitoring to robotic skins to prosthetic limbs. Although piezoresistive composite elastomers have shown great promise in this area of research, typically poor sensitivities and low response times, as well as signal drifts with temperature, have prevented further development of these materials in electronic skin applications. Here, we introduce and demonstrate a design of flexible electronic skins based on composite elastomer films that contain interlocked microdome arrays and display giant tunneling piezoresistance. Our design substantially increases the change in contact area upon loading and enables an extreme resistance-switching behavior (ROFF/RON of ∼10(5)). This translates into high sensitivity to pressure (-15.1 kPa(-1), ∼0.2 Pa minimum detection) and rapid response/relaxation times (∼0.04 s), with a minimal dependence on temperature variation. We show that our sensors can sensitively monitor human breathing flows and voice vibrations, highlighting their potential use in wearable human-health monitoring systems.


ACS Nano | 2014

Tactile-direction-sensitive and stretchable electronic skins based on human-skin-inspired interlocked microstructures.

Jonghwa Park; Youngoh Lee; Jaehyung Hong; Youngsu Lee; Minjeong Ha; Youngdo Jung; Hyuneui Lim; Sung Youb Kim; Hyunhyub Ko

Stretchable electronic skins with multidirectional force-sensing capabilities are of great importance in robotics, prosthetics, and rehabilitation devices. Inspired by the interlocked microstructures found in epidermal-dermal ridges in human skin, piezoresistive interlocked microdome arrays are employed for stress-direction-sensitive, stretchable electronic skins. Here we show that these arrays possess highly sensitive detection capability of various mechanical stimuli including normal, shear, stretching, bending, and twisting forces. Furthermore, the unique geometry of interlocked microdome arrays enables the differentiation of various mechanical stimuli because the arrays exhibit different levels of deformation depending on the direction of applied forces, thus providing different sensory output patterns. In addition, we show that the electronic skins attached on human skin in the arm and wrist areas are able to distinguish various mechanical stimuli applied in different directions and can selectively monitor different intensities and directions of air flows and vibrations.


ACS Nano | 2014

Durable and Water-Floatable Ionic Polymer Actuator with Hydrophobic and Asymmetrically Laser-Scribed Reduced Graphene Oxide Paper Electrodes

Jaehwan Kim; Jin Han Jeon; Hyun Jun Kim; Hyuneui Lim; Il-Kwon Oh

Ionic polymer actuators driven by electrical stimuli have been widely investigated for use in practical applications such as bioinspired robots, sensors, and biomedical devices. However, conventional ionic polymer-metal composite actuators have a serious drawback of poor durability under long-term actuation in open air, mainly because of the leakage of the inner electrolyte and hydrated cations through cracks in the metallic electrodes. Here, we developed a highly durable and water-floatable ionic polymer artificial muscle by employing hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes (HLrGOP). The highly conductive, flexible, and cost-effective HLrGOP electrodes have asymmetrically smooth hydrophobic outer and rough inner surfaces, resulting in liquid-impermeable and water-floatable functionalities and strong bonding between an ionic polymer and the electrodes. More interestingly, the HLrGOP electrode, which has a unique functionality to prevent the leakage of the vaporized or liquid electrolyte and mobile ions during electrical stimuli, greatly contributes to an exceptionally durable ionic polymer-graphene composite actuator that is a prerequisite for practical applications in active biomedical devices, biomimetic robots, touch-feedback haptic systems, and flexible soft electronics.


ACS Applied Materials & Interfaces | 2013

Optimal Moth Eye Nanostructure Array on Transparent Glass Towards Broadband Antireflection

Seungmuk Ji; Kyungjun Song; Thanh Binh Nguyen; Namsoo Kim; Hyuneui Lim

Broadband antireflection (AR) is essential for improving the photocurrent generation of photovoltaic modules or the enhancement of visibility in optical devices. Beyond conventional AR coating methods, moth eye mimicking nanostructures give new directions to enhance broadband antireflection through the selection of geometrical parameters, such as height, periodic distance, shape, and arrangement. This study numerically and experimentally investigates the behavior of light on complex nanostructures designed to mimic the surface of the moth eye with mixed shapes and various arrangements. To obtain broadband AR, we rigorously study the design parameters, such as height, periodic distance, shape, and arrangement, on a transparent quartz substrate. Several kinds of nanopillar arrays are elaborately fabricated including mixed nanostructures comprising pointy and round shapes in ordered and random arrangements via colloidal lithography. The optimal morphology of moth eye nanostructure arrays for broadband antireflection is suggested in view of reflectance and average weight transmittance.


Nanoscale | 2012

A quartz nanopillar hemocytometer for high-yield separation and counting of CD4+ T lymphocytes

Dong-Joo Kim; Jin-Kyeong Seol; Yu Wu; Seungmuk Ji; Gil-Sung Kim; Jung-Hwan Hyung; Seung-Yong Lee; Hyuneui Lim; Rong Fan; Sang-Kwon Lee

We report the development of a novel quartz nanopillar (QNP) array cell separation system capable of selectively capturing and isolating a single cell population including primary CD4(+) T lymphocytes from the whole pool of splenocytes. Integrated with a photolithographically patterned hemocytometer structure, the streptavidin (STR)-functionalized-QNP (STR-QNP) arrays allow for direct quantitation of captured cells using high content imaging. This technology exhibits an excellent separation yield (efficiency) of ~95.3 ± 1.1% for the CD4(+) T lymphocytes from the mouse splenocyte suspensions and good linear response for quantitating captured CD4(+) T-lymphoblasts, which is comparable to flow cytometry and outperforms any non-nanostructured surface capture techniques, i.e. cell panning. This nanopillar hemocytometer represents a simple, yet efficient cell capture and counting technology and may find immediate applications for diagnosis and immune monitoring in the point-of-care setting.


Nanotechnology | 2013

Thermal conductivity measurements of single-crystalline bismuth nanowires by the four-point-probe 3-ω technique at low temperatures

Seung-Yong Lee; Gil-Sung Kim; Mi-Ri Lee; Hyuneui Lim; Wan-Doo Kim; Sang-Kwon Lee

We have successfully investigated the thermal conductivity (κ) of single-crystalline bismuth nanowires (BiNWs) with [110] growth direction, via a straightforward and powerful four-point-probe 3-ω technique in the temperature range 10-280 K. The BiNWs, which are well known as the most effective material for thermoelectric (TE) device applications, were synthesized by compressive thermal stress on a SiO2/Si substrate at 250-270 °C for 10 h. To understand the thermal transport mechanism of BiNWs, we present three kinds of experimental technique as follows, (i) a manipulation of a single BiNW by an Omni-probe in a focused ion beam (FIB), (ii) a suspended bridge structure integrating a four-point-probe chip by micro-fabrication to minimize the thermal loss to the substrate, and (iii) a simple 3-ω technique system setup. We found that the thermal transport of BiNWs is highly affected by boundary scattering of both phonons and electrons as the dominant heat carriers. The thermal conductivity of a single BiNW (d ~ 123 nm) was estimated to be ~2.9 W m(-1) K(-1) at 280 K, implying lower values compared to the thermal conductivity of the bulk (~11 W m(-1) K(-1) at 280 K). It was noted that this reduction in the thermal conductivity of the BiNWs could be due to strongly enhanced phonon-boundary scattering at the surface of the BiNWs. Furthermore, we present temperature-dependent (10-280 K) thermal conductivity of the BiNWs using the 3-ω technique.


Sensors | 2016

A Sensitivity Enhanced MWCNT/PDMS Tactile Sensor Using Micropillars and Low Energy Ar+ Ion Beam Treatment

Syed Azkar Ul Hasan; Youngdo Jung; Seong-Gi Kim; Cho-long Jung; Sunjong Oh; Junhee Kim; Hyuneui Lim

High sensitive flexible and wearable devices which can detect delicate touches have attracted considerable attentions from researchers for various promising applications. This research was aimed at enhancing the sensitivity of a MWCNT/PDMS piezoresistive tactile sensor through modification of its surface texture in the form of micropillars on MWCNT/PDMS film and subsequent low energy Ar+ ion beam treatment of the micropillars. The introduction of straight micropillars on the MWCNT/PDMS surface increased the sensitivity under gentle touch. Low energy ion beam treatment was performed to induce a stiff layer on the exposed surface of the micropillar structured MWCNT/PDMS film. The low energy ion bombardment stabilized the electrical properties of the MWCNT/PDMS surface and tuned the curvature of micropillars according to the treatment conditions. The straight micropillars which were treated by Ar+ ion with an incident angle of 0° demonstrated the enhanced sensitivity under normal pressure and the curved micropillars which were treated with Ar+ ion with an incident angle of 60° differentiated the direction of an applied shear pressure. The ion beam treatment on micropillar structured MWCNT/PDMS tactile sensors can thus be applied to reliable sensing under gentle touch with directional discrimination.


Sensors | 2015

Piezoresistive Tactile Sensor Discriminating Multidirectional Forces

Youngdo Jung; Duck-Gyu Lee; Jonghwa Park; Hyunhyub Ko; Hyuneui Lim

Flexible tactile sensors capable of detecting the magnitude and direction of the applied force together are of great interest for application in human-interactive robots, prosthetics, and bionic arms/feet. Human skin contains excellent tactile sensing elements, mechanoreceptors, which detect their assigned tactile stimuli and transduce them into electrical signals. The transduced signals are transmitted through separated nerve fibers to the central nerve system without complicated signal processing. Inspired by the function and organization of human skin, we present a piezoresistive type tactile sensor capable of discriminating the direction and magnitude of stimulations without further signal processing. Our tactile sensor is based on a flexible core and four sidewall structures of elastomer, where highly sensitive interlocking piezoresistive type sensing elements are embedded. We demonstrate the discriminating normal pressure and shear force simultaneously without interference between the applied forces. The developed sensor can detect down to 128 Pa in normal pressure and 0.08 N in shear force, respectively. The developed sensor can be applied in the prosthetic arms requiring the restoration of tactile sensation to discriminate the feeling of normal and shear force like human skin.


Nanoscale Research Letters | 2014

Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness

No-Won Park; Won-Yong Lee; Jin-A Kim; Kyungjun Song; Hyuneui Lim; Wan-Doo Kim; Soon-Gil Yoon; Sang-Kwon Lee

We report on the out-of-plane thermal conductivities of epitaxial Fe3O4 thin films with thicknesses of 100, 300, and 400xa0nm, prepared using pulsed laser deposition (PLD) on SiO2/Si substrates. The four-point probe three-omega (3-ω) method was used for thermal conductivity measurements of the Fe3O4 thin films in the temperature range of 20 to 300xa0K. By measuring the temperature-dependent thermal characteristics of the Fe3O4 thin films, we realized that their thermal conductivities significantly decreased with decreasing grain size and thickness of the films. The out-of-plane thermal conductivities of the Fe3O4 films were found to be in the range of 0.52 to 3.51xa0W/mu2009·u2009K at 300xa0K. For 100-nm film, we found that the thermal conductivity was as low as approximately 0.52xa0W/mu2009·u2009K, which was 1.7 to 11.5 order of magnitude lower than the thermal conductivity of bulk material at 300xa0K. Furthermore, we calculated the temperature dependence of the thermal conductivity of these Fe3O4 films using a simple theoretical Callaway model for comparison with the experimental data. We found that the Callaway model predictions agree reasonably with the experimental data. We then noticed that the thin film-based oxide materials could be efficient thermoelectric materials to achieve high performance in thermoelectric devices.


ACS Applied Materials & Interfaces | 2014

Improving the electrical properties of lanthanum silicate films on ge metal oxide semiconductor capacitors by adopting interfacial barrier and capping layers.

Yongsuk Choi; Hyuneui Lim; Sung-Hoon Lee; Sungin Suh; Kim; Hun Soon Jung; Sungnam Park; Jyung Hyun Lee; Sungho Kim; Chi-Sun Hwang; H. Kim

The electrical properties of La-silicate films grown by atomic layer deposition (ALD) on Ge substrates with different film configurations, such as various Si concentrations, Al2O3 interfacial passivation layers, and SiO2 capping layers, were examined. La-silicate thin films were deposited using alternating injections of the La[N{Si(CH3)3}2]3 precursor with O3 as the La and O precursors, respectively, at a substrate temperature of 310 °C. The Si concentration in the La-silicate films was further controlled by adding ALD cycles of SiO2. For comparison, La2O3 films were also grown using [La((i)PrCp)3] and O3 as the La precursor and oxygen source, respectively, at the identical substrate temperature. The capacitance-voltage (C-V) hysteresis decreased with an increasing Si concentration in the La-silicate films, although the films showed a slight increase in the capacitance equivalent oxide thickness. The adoption of Al2O3 at the interface as a passivation layer resulted in lower C-V hysteresis and a low leakage current density. The C-V hysteresis voltages of the La-silicate films with Al2O3 passivation and SiO2 capping layers was significantly decreased to ∼0.1 V, whereas the single layer La-silicate film showed a hysteresis voltage as large as ∼1.0 V.

Collaboration


Dive into the Hyuneui Lim's collaboration.

Top Co-Authors

Avatar

Youngdo Jung

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thanh-Binh Nguyen

University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Hyunhyub Ko

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jonghwa Park

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seong-Gi Kim

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunjong Oh

Chungnam National University

View shared research outputs
Top Co-Authors

Avatar

Youngoh Lee

Ulsan National Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seungchul Park

University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge