Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyung Chul Kim is active.

Publication


Featured researches published by Hyung Chul Kim.


Journal of Industrial Ecology | 2012

Life Cycle Greenhouse Gas Emissions of Crystalline Silicon Photovoltaic Electricity Generation

David D. Hsu; Patrick O’Donoughue; Vasilis Fthenakis; Garvin Heath; Hyung Chul Kim; Pamala Sawyer; Jun-Ki Choi; Damon E. Turney

Published scientific literature contains many studies estimating life cycle greenhouse gas (GHG) emissions of residential and utility‐scale solar photovoltaics (PVs). Despite the volume of published work, variability in results hinders generalized conclusions. Most variance between studies can be attributed to differences in methods and assumptions. To clarify the published results for use in decision making and other analyses, we conduct a meta‐analysis of existing studies, harmonizing key performance characteristics to produce more comparable and consistently derived results. Screening 397 life cycle assessments (LCAs) relevant to PVs yielded 13 studies on crystalline silicon (c‐Si) that met minimum standards of quality, transparency, and relevance. Prior to harmonization, the median of 42 estimates of life cycle GHG emissions from those 13 LCAs was 57 grams carbon dioxide equivalent per kilowatt‐hour (g CO‐eq/kWh), with an interquartile range (IQR) of 44 to 73. After harmonizing key performance characteristics (irradiation of 1,700 kilowatt‐hours per square meter per year (kWh/m2/yr); system lifetime of 30 years; module efficiency of 13.2% or 14.0%, depending on module type; and a performance ratio of 0.75 or 0.80, depending on installation, the median estimate decreased to 45 and the IQR tightened to 39 to 49. The median estimate and variability were reduced compared to published estimates mainly because of higher average assumptions for irradiation and system lifetime. For the sample of studies evaluated, harmonization effectively reduced variability, providing a clearer synopsis of the life cycle GHG emissions from c‐Si PVs. The literature used in this harmonization neither covers all possible c‐Si installations nor represents the distribution of deployed or manufactured c‐Si PVs.


Journal of Industrial Ecology | 2012

Life Cycle Greenhouse Gas Emissions of Thin‐Film Photovoltaic Electricity Generation

Hyung Chul Kim; Vasilis Fthenakis; Jun-Ki Choi; Damon E. Turney

We present the process and the results of harmonization of greenhouse gas (GHG) emissions during the life cycle of commercial thin‐film photovoltaics (PVs), that is, amorphous silicon (a‐Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). We reviewed 109 studies and harmonized the estimates of GHG emissions by aligning the assumptions, parameters, and system boundaries. During the initial screening we eliminated abstracts, short conference papers, presentations without supporting documentation, and unrelated analyses; 91 studies passed this initial screening. In the primary screening we applied rigorous criteria for completeness of reporting, validity of analysis methods, and modern relevance of the PV system studied. Additionally, we examined whether the product is a commercial one, whether the production line still exists, and whether the studys core data are original or secondary. These screenings produced five studies as the best representations of the carbon footprint of modern thin‐film PV technologies. These were harmonized through alignment of efficiency, irradiation, performance ratio, balance of system, and lifetime. The resulting estimates for carbon footprints are 20, 14, and 26 grams carbon dioxide equivalent per kilowatt‐hour (g CO‐eq/kWh), respectively, for a‐Si, CdTe, and CIGS, for ground‐mount application under southwestern United States (US‐SW) irradiation of 2,400 kilowatt‐hours per square meter per year (kWh/m2/yr), a performance ratio of 0.8, and a lifetime of 30 years. Harmonization for the rooftop PV systems with a performance ratio of 0.75 and the same irradiation resulted in carbon footprint estimates of 21, 14, and 27 g CO‐eq/kWh, respectively, for the three technologies. This screening and harmonization rectifies previous incomplete or outdated assessments and clarifies variations in carbon footprints across studies and amongst thin‐film technologies.


Environmental Science & Technology | 2013

Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: review and harmonization.

Hyung Chul Kim; Timothy J. Wallington

Replacing conventional materials (steel and iron) with lighter alternatives (e.g., aluminum, magnesium, and composites) decreases energy consumption and greenhouse gas (GHG) emissions during vehicle use but may increase energy consumption and GHG emissions during vehicle production. There have been many life cycle assessment (LCA) studies on the benefits of vehicle lightweighting, but the wide variety of assumptions used makes it difficult to compare results from the studies. To clarify the benefits of vehicle lightweighting we have reviewed the available literature (43 studies). The GHG emissions and primary energy results from 33 studies that passed a screening process were harmonized using a common set of assumptions (lifetime distance traveled, fuel-mass coefficient, secondary weight reduction factor, fuel consumption allocation, recycling rate, and energy intensity of materials). After harmonization, all studies indicate that using aluminum, glass-fiber reinforced plastic, and high strength steel to replace conventional steel decreases the vehicle life cycle energy use and GHG emissions. Given the flexibility in options implied by the variety of materials available and consensus that these materials have substantial energy and emissions benefits, it seems likely that lightweighting will be used increasingly to improve fuel economy and reduce life cycle GHG emissions from vehicles.


Environmental Science & Technology | 2016

Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis

Hyung Chul Kim; Timothy J. Wallington; Renata Arsenault; Chulheung Bae; Suckwon Ahn; Jaeran Lee

We report the first cradle-to-gate emissions assessment for a mass-produced battery in a commercial battery electric vehicle (BEV); the lithium-ion battery pack used in the Ford Focus BEV. The assessment was based on the bill of materials and primary data from the battery industry, that is, energy and materials input data from the battery cell and pack supplier. Cradle-to-gate greenhouse gas (GHG) emissions for the 24 kWh Ford Focus lithium-ion battery are 3.4 metric tonnes of CO2-eq (140 kg CO2-eq per kWh or 11 kg CO2-eq per kg of battery). Cell manufacturing is the key contributor accounting for 45% of the GHG emissions. We review published studies of GHG emissions associated with battery production to compare and contrast with our results. Extending the system boundary to include the entire vehicle we estimate a 39% increase in the cradle-to-gate GHG emissions of the Focus BEV compared to the Focus internal combustion engine vehicle (ICEV), which falls within the range of literature estimates of 27-63% increases for hypothetical nonproduction BEVs. Our results reduce the uncertainties associated with assessment of BEV battery production, serve to identify opportunities to reduce emissions, and confirm previous assessments that BEVs have great potential to reduce GHG emissions over the full life cycle and provide local emission free mobility.


Environmental Science & Technology | 2013

Life cycle assessment of vehicle lightweighting: a physics-based model of mass-induced fuel consumption.

Hyung Chul Kim; Timothy J. Wallington

Lightweighting is a key strategy used to improve vehicle fuel economy. Replacing conventional materials (e.g., steel) with lighter alternatives (e.g., aluminum, magnesium, and composites) decreases energy consumption and greenhouse gas (GHG) emissions during vehicle use, but often increases energy consumption and GHG emissions during materials and vehicle production. Assessing the life-cycle benefits of mass reduction requires a quantitative description of the mass-induced fuel consumption during vehicle use. A new physics-based method for estimating mass-induced fuel consumption (MIF) is proposed. We illustrate the utility of this method by using publicly available data to calculate MIF values in the range of 0.2-0.5 L/(100 km 100 kg) based on 106 records of fuel economy tests by the U.S. Environmental Protection Agency for 2013 model year vehicles. Lightweighting is shown to have the most benefit when applied to vehicles with high fuel consumption and high power. Use of the physics-based model presented here would place future life cycle assessment studies of vehicle lightweighting on a firmer scientific foundation.


Environmental Science & Technology | 2015

Life Cycle Assessment of Vehicle Lightweighting: Novel Mathematical Methods to Estimate Use-Phase Fuel Consumption.

Hyung Chul Kim; Timothy J. Wallington; John Sullivan; Gregory A. Keoleian

Lightweighting is a key strategy to improve vehicle fuel economy. Assessing the life-cycle benefits of lightweighting requires a quantitative description of the use-phase fuel consumption reduction associated with mass reduction. We present novel methods of estimating mass-induced fuel consumption (MIF) and fuel reduction values (FRVs) from fuel economy and dynamometer test data in the U.S. Environmental Protection Agency (EPA) database. In the past, FRVs have been measured using experimental testing. We demonstrate that FRVs can be mathematically derived from coast down coefficients in the EPA vehicle test database avoiding additional testing. MIF and FRVs calculated for 83 different 2013 MY vehicles are in the ranges 0.22-0.43 and 0.15-0.26 L/(100 km 100 kg), respectively, and increase to 0.27-0.53 L/(100 km 100 kg) with powertrain resizing to retain equivalent vehicle performance. We show how use-phase fuel consumption can be estimated using MIF and FRVs in life cycle assessments (LCAs) of vehicle lightweighting from total vehicle and vehicle component perspectives with, and without, powertrain resizing. The mass-induced fuel consumption model is illustrated by estimating lifecycle greenhouse gas (GHG) emission benefits from lightweighting a grille opening reinforcement component using magnesium or carbon fiber composite for 83 different vehicle models.


Journal of Industrial Ecology | 2017

When Comparing Alternative Fuel-Vehicle Systems, Life Cycle Assessment Studies Should Consider Trends in Oil Production

Timothy J. Wallington; James E. Anderson; Robert De Kleine; Hyung Chul Kim; Heiko Maas; Adam R. Brandt; Gregory A. Keoleian

Summary Petroleum from unconventional reserves is making an increasingly important contribution to the transportation fuel supply, but is generally more expensive and has greater environmental burdens than petroleum from conventional sources. Life cycle assessments (LCAs) of alternative fuel-vehicle technologies typically consider conventional internal combustion engine vehicles fueled by gasoline produced from the average petroleum slate used in refineries as a baseline. Large-scale deployment of alternative fuel-vehicle technologies will decrease petroleum demand and lead to decreased production at the economic margin (unconventional oil), but this is not considered in most current LCAs. If marginal petroleum resources have larger impacts than average petroleum resources, the environmental benefits of petroleum demand reduction are underestimated by the current modeling approaches. Often, models include some consequential-based impacts (such as indirect land-use change for biofuels), but exclude others (such as avoided unconventional oil production). This approach is inconsistent and does not provide a robust basis for public policy and private investment strategy decisions. We provide an example to illustrate the potential scale of these impacts, but further research is needed to establish and quantify these marginal effects and incorporate them into LCAs of both conventional and alternative fuel-vehicle technologies.


Reference Module in Earth Systems and Environmental Sciences#R##N#Comprehensive Renewable Energy | 2012

Environmental Impacts of Photovoltaic Life Cycles

Vasilis Fthenakis; Hyung Chul Kim

Assessments of the environmental impacts of energy generation and storage technologies are essential in evaluating their sustainability. Life-cycle assessment is a well-accepted tool for investigating the environmental profile of energy technologies describing, in detail, material and energy flows and emissions into the environment that may occur at each life stage (e.g., mining of materials, processing and their purification, manufacturing, installation, operation, decommissioning, and disposal or recycling). In this chapter, we describe the environmental footprint of three commercial photovoltaic technologies, that is, monocrystalline silicon, multicrystalline silicon, and cadmium telluride, mounted on flat, fixed ground-mounted systems. In addition to environmental metrics, we quantify life-cycle risk indicators (i.e., fatalities, injuries, and maximum consequences) in a comparative context with other electricity generation pathways.


Environmental Science & Technology | 2017

Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains

Jason M. Luk; Hyung Chul Kim; Robert De Kleine; Timothy J. Wallington; Heather L. MacLean

The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.


Journal of Industrial Ecology | 2016

Life Cycle Water Use of Ford Focus Gasoline and Ford Focus Electric Vehicles

Hyung Chul Kim; Timothy J. Wallington; Sherry A. Mueller; Bert Bras; Tina Guldberg; Francisco Tejada

Literature data for vehicle life cycle water consumption are limited and contradictory; there are no published estimates of vehicle life cycle water withdrawal. To place future discussions of sustainable mobility on a firmer technical basis, we report the results of a cradle-to-grave assessment of water withdrawal and water consumption for the gasoline internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) variants of the 2012 Ford Focus. U.S. average life cycle water withdrawal and consumption of 531 and 131 cubic meters (m3), respectively, for a lifetime driving distance of 160,000 miles are estimated for the Focus ICEV using E10 gasoline. Employing our upper bound of water use in oil refinery operations and corn and ethanol production increases the life cycle withdrawal and consumption to 1,570 and 761 m3, respectively. The U.S. average life cycle water withdrawal for the Focus BEV is 3,770 m3 (7 times that for the ICEV, reflecting the large volume of cooling water required during electricity generation), whereas the water consumption is 170 m3 (comparable to that for the ICEV). Vehicle use is the most significant phase of the life cycle with fuel production, accounting for 49% of water withdrawal and 82% of water consumption for the ICEV. For the BEV, fuel (electricity) production accounts for 92% of life cycle water withdrawal and 85% of consumption. The results highlight the importance of renewable and sustainable fuels and increased vehicle energy efficiency in providing sustainable mobility. [ABSTRACT FROM AUTHOR]

Collaboration


Dive into the Hyung Chul Kim's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elai Davicioni

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rola Saouaf

Cedars-Sinai Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge