Hyung Kwoun Kim
Catholic University of Korea
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hyung Kwoun Kim.
Journal of Bioscience and Bioengineering | 2009
Kyung Seok Yang; Jung-Hoon Sohn; Hyung Kwoun Kim
Biodiesel, an alternative fuel, is generated via the transesterification reaction of vegetable oil or animal oil with alcohol. Currently, many reports have noted that microbial lipases might be utilized for the production of biodiesel. Among them, immobilized Candida antarctica lipase B (Novozym435) is frequently utilized for its biocatalytic efficiency and availability. However, as the enzyme is unstable in a medium containing high concentrations of methanol, a multi-stepwise methanol supply is required for the efficient production of biodiesel. Photobacterium lipolyticum lipase (M37) was determined to be quite stable in a medium containing a high concentration of methanol. The enzyme activity was maintained for longer than 48 h without any loss at a methanol concentration of 10%. In an effort to evaluate enzyme performance in the production of biodiesel, we have compared M37 lipase and Novozym435 in the biodiesel production reaction using fresh or waste oil and methanol. In the 3-stepwise methanol feeding method generally conducted for Novozym435 in biodiesel production, the M37 lipase showed a similar or superior conversion yield to Novozym435. However, the M37 lipase evidenced significantly higher conversion yields in the 2 and 1 step methanol feeding reactions. Particularly in the 1 step process using 10% of methanol where almost no conversion was detected by Novozym435, the biodiesel yield achieved with M37 lipase reached a level of up to 70% of the possible maximum yield. Consequently, this methanol-tolerant lipase, M37, has been shown to be a suitable enzyme for use in the biodiesel production process.
Fems Microbiology Letters | 2004
Hyung Kwoun Kim; Yeo-Jin Jung; Won-Chan Choi; Hyoung Seok Ryu; Tae-Kwang Oh; Jung-Kee Lee
A sequence-based approach was used to retrieve functional lipases from microbial genome databases. Many novel genes assigned as putative lipases were tested using the criteria of the typical lipase sequence rule, based on a consensus sequence of a catalytic triad (Ser, Asp, His) and oxyanion hole sequence (HG). To obtain the lipase genes satisfying the sequence rule, PCR cloning was performed, while the lipase activities were tested using a tributyrin/tricaprylin plate and p-nitrophenyl caproate. Among nine putative lipases from four strains, five functional lipolytic proteins were obtained from Archaeoglobus fulgidus, Deinococcus radiodurans, and Agrobacterium tumefaciens. All five lipases exhibited a relatively low sequence similarity (less than 26.7%) with known lipases and turned out to belong to different lipase families. Accordingly, the current results indicate that the proposed strategic approach based on the microbial genome is an efficient and rapid method for finding novel and functional lipases.
Journal of Bioscience and Bioengineering | 2012
Young Ok Kim; Vivia Khosasih; Bo-Hye Nam; Sang-Jun Lee; Antonius Suwanto; Hyung Kwoun Kim
A lipase-producing Photobacterium strain (MA1-3) was isolated from the intestine of a blood clam caught at Namhae, Korea. The lipase gene was cloned by shotgun cloning and encoded 340 amino acids with a molecular mass of 38,015 Da. It had a very low sequence identity with other bacterial lipases, with the exception of that of Photobacterium lipolyticum M37 (83.2%). The MA1-3 lipase was produced in soluble form when Escherichia coli cells harboring the gene were cultured at 18°C. Its optimum temperature and pH were 45°C and pH 8.5, respectively. Its activation energy was calculated to be 2.69 kcal/mol, suggesting it to be a cold-adapted lipase. Its optimum temperature, temperature stability, and substrate specificity were quite different from those of M37 lipase, despite the considerable sequence similarities. Meanwhile, MA1-3 lipase performed a transesterification reaction using olive oil and various alcohols including methanol, ethanol, 1-propanol, and 1-butanol. In the presence of t-butanol as a co-solvent, this lipase produced biodiesel using methanol and plant or waste oils. The highest biodiesel conversion yield (73%) was achieved using waste soybean oil and methanol at a molar ratio of 1:5 after 12 h using 5 units of lipase.
Journal of Microbiology and Biotechnology | 2017
Se Hyeon Park; Feilicia Soetyono; Hyung Kwoun Kim
Lysine decarboxylase (CadA) converts L-lysine into cadaverine (1,5-pentanediamine), which is an important platform chemical with many industrial applications. Although there have been many efforts to produce cadaverine through the soluble CadA enzyme or Escherichia coli whole cells overexpressing the CadA enzyme, there have been few reports concerning the immobilization of the CadA enzyme. Here, we have prepared a cross-linked enzyme aggregate (CLEA) of E. coli CadA and performed bioconversion using CadACLEA. CadAfree and CadACLEA were characterized for their enzymatic properties. The optimum temperatures of CadAfree and CadACLEA were 60°C and 55°C, respectively. The thermostability of CadACLEA was significantly higher than that of CadAfree. The optimum pH of both enzymes was 6.0. CadAfree could not be recovered after use, whereas CadACLEA was rapidly recovered and the residual activity was 53% after the 10th recycle. These results demonstrate that CadACLEA can be used as a potential catalyst for efficient production of cadaverine.
Journal of Microbiology and Biotechnology | 2016
Ki Ppeum Lee; Hyung Kwoun Kim
Sugar esters are valuable compounds composed of various sugars and fatty acids that can be used as antibacterial agents and emulsifiers in toothpaste and canned foods. For example, fructose fatty acid esters suppress growth of Streptococcus mutans, a typical pathogenic bacterium causing dental caries. In this study, fructose laurate ester was chosen as a target material and was synthesized by a transesterification reaction using Candida antarctica lipase B. We performed a solvent screening experiment and found that a t-butanol/dimethyl sulfoxide mixture was the best solvent to dissolve fructose and methyl laurate. Fructose laurate was synthesized by transesterification of fructose (100 mM) with methyl laurate (30 mM) in t-butanol containing 20% dimethyl sulfoxide. The conversion yield was about 90%, which was calculated based on the quantity of methyl laurate using high-performance liquid chromatography. Fructose monolaurate (Mr 361) was detected in the reaction mixture by high-resolution mass spectrometry. The inhibitory effect of fructose laurate on growth of oral or food spoilage microorganisms, including S. mutans, Bacillus coagulans, and Geobacillus stearothermophilus, was evaluated.
Journal of Microbiology and Biotechnology | 2016
Jeongwoo Hyun; Maria Abigail; Jin Woo Choo; Jin Ryu; Hyung Kwoun Kim
Glucose dehydrogenase (GDH) is an oxidoreductase enzyme and is used as a biocatalyst to regenerate NAD(P)H in reductase-mediated chiral synthesis reactions. In this study, the glucose 1-dehydrogenase B gene (gdhB) was cloned from Bacillus thuringiensis subsp. kurstaki, and wild-type (GDH-BTWT) and His-tagged (GDH-BTN-His, GDH-BTC-His) enzymes were produced in Escherichia coli BL21 (DE3). All enzymes were produced in the soluble forms from E. coli. GDH-BTWT and GDH-BTN-His showed high specific enzymatic activities of 6.6 U/mg and 5.5 U/mg, respectively, whereas GDH-BTC-His showed a very low specific enzymatic activity of 0.020 U/mg. These results suggest that the intact C-terminal carboxyl group is important for GDH-BT activity. GDH-BTWT was stable up to 65°C, whereas GDH-BTN-His and GDH-BTC-His were stable up to 45°C. Gel permeation chromatography showed that GDH-BTWT is a dimer, whereas GDH-BTN-His and GDH-BTC-His are monomeric. These results suggest that the intact N- and C-termini are required for GDH-BT to maintain thermostability and to form its dimer structure. The homology model of the GDH-BTWT single subunit was constructed based on the crystal structure of Bacillus megaterium GDH (PDB ID 3AY6), showing that GDH-BTWT has a Rossmann fold structure with its N- and C-termini located on the subunit surface, which suggests that His-tagging affected the native dimer structure. GDH-BTWT and GDH-BTN-His regenerated NADPH in a yeast reductase-mediated chiral synthesis reaction, suggesting that these enzymes can be used as catalysts in fine-chemical and pharmaceutical industries.
Enzyme and Microbial Technology | 2014
Jin Chul Jo; Soon-Ja Kim; Hyung Kwoun Kim
Staphylococcus haemolyticus L62 (SHL62) lipase was displayed on the outer membrane of Escherichia coli using the OmpA signal peptide and the autotransporter EstAβ8 protein. Localization of SHL62 lipase on the outer membrane of E. coli was confirmed using immunofluorescence microscopy and flow cytometry analysis. Lipase activity of the displayed SHL62 lipase was also measured using spectrophotometry and pH titration. SHL62 lipase activity of whole cells reached 2.0U/ml culture (OD600nm of 10) when it was measured by the p-nitrophenyl caprylate assay after being induced with 1mM IPTG for 24h. The optimum temperature and pH for the lipase was 45°C and 10, respectively. Furthermore, it maintained more than 90% of maximum lipase activity at up to 50°C and in a pH range of 5-9. The hydrolytic activity assay conduted with various substrates confirmed that p-nitrophenyl caprylate and corn oil were preferred substrates among various synthetic and natural substrates, respectively. The displayed SHL62 lipase produced fatty acid esters from various alcohols and plant oils through transesterification.
Journal of Molecular Catalysis B-enzymatic | 2003
Yeo-Jin Jung; Jung-Kee Lee; Chang-Geun Sung; Tae Kwang Oh; Hyung Kwoun Kim
Journal of Molecular Catalysis B-enzymatic | 2013
Sang Hyeon Kim; Soon-Ja Kim; Seongsoon Park; Hyung Kwoun Kim
Journal of Molecular Catalysis B-enzymatic | 2013
Soon-Ja Kim; Jae Kwang Song; Hyung Kwoun Kim