Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hyung-Youl Park is active.

Publication


Featured researches published by Hyung-Youl Park.


ACS Nano | 2015

Wide-range controllable n-doping of molybdenum disulfide (MoS2) through thermal and optical activation.

Hyung-Youl Park; Myung-Hoon Lim; Jeaho Jeon; Gwangwe Yoo; Dong-Ho Kang; Sung Kyu Jang; Min Hwan Jeon; Youngbin Lee; Jeong Ho Cho; Geun Young Yeom; Woo-Shik Jung; Jaeho Lee; Seongjun Park; Sungjoo Lee; Jin-Hong Park

Despite growing interest in doping two-dimensional (2D) transition metal dichalcogenides (TMDs) for future layered semiconductor devices, controllability is currently limited to only heavy doping (degenerate regime). This causes 2D materials to act as metallic layers, and an ion implantation technique with precise doping controllability is not available for these materials (e.g., MoS2, MoSe2, WS2, WSe2, graphene). Since adjustment of the electrical and optical properties of 2D materials is possible within a light (nondegenerate) doping regime, a wide-range doping capability including nondegenerate and degenerate regimes is a critical aspect of the design and fabrication of 2D TMD-based electronic and optoelectronic devices. Here, we demonstrate a wide-range controllable n-doping method on a 2D TMD material (exfoliated trilayer and bulk MoS2) with the assistance of a phosphorus silicate glass (PSG) insulating layer, which has the broadest doping range among the results reported to date (between 3.6 × 10(10) and 8.3 × 10(12) cm(-2)) and is also applicable to other 2D semiconductors. This is achieved through (1) a three-step process consisting of, first, dopant out-diffusion between 700 and 900 °C, second, thermal activation at 500 °C, and, third, optical activation above 5 μW steps and (2) weight percentage adjustment of P atoms in PSG (2 and 5 wt %). We anticipate our widely controllable n-doping method to be a starting point for the successful integration of future layered semiconductor devices.


ACS Nano | 2014

n- and p-Type Doping Phenomenon by Artificial DNA and M-DNA on Two-Dimensional Transition Metal Dichalcogenides

Hyung-Youl Park; Sreekantha Reddy Dugasani; Dong-Ho Kang; Jeaho Jeon; Sung Kyu Jang; Sungjoo Lee; Yonghan Roh; Sung Ha Park; Jin-Hong Park

Deoxyribonucleic acid (DNA) and two-dimensional (2D) transition metal dichalcogenide (TMD) nanotechnology holds great potential for the development of extremely small devices with increasingly complex functionality. However, most current research related to DNA is limited to crystal growth and synthesis. In addition, since controllable doping methods like ion implantation can cause fatal crystal damage to 2D TMD materials, it is very hard to achieve a low-level doping concentration (nondegenerate regime) on TMD in the present state of technology. Here, we report a nondegenerate doping phenomenon for TMD materials (MoS2 and WSe2, which represent n- and p-channel materials, respectively) using DNA and slightly modified DNA by metal ions (Zn(2+), Ni(2+), Co(2+), and Cu(2+)), named as M-DNA. This study is an example of interdisciplinary convergence research between DNA nanotechnology and TMD-based 2D device technology. The phosphate backbone (PO4(-)) in DNA attracts and holds hole carriers in the TMD region, n-doping the TMD films. Conversely, M-DNA nanostructures, which are functionalized by intercalating metal ions, have positive dipole moments and consequently reduce the electron carrier density of TMD materials, resulting in p-doping phenomenon. N-doping by DNA occurs at ∼6.4 × 10(10) cm(-2) on MoS2 and ∼7.3 × 10(9) cm(-2) on WSe2, which is uniform across the TMD area. p-Doping which is uniformly achieved by M-DNA occurs between 2.3 × 10(10) and 5.5 × 10(10) cm(-2) on MoS2 and between 2.4 × 10(10) and 5.0 × 10(10) cm(-2) on WSe2. These doping levels are in the nondegenerate regime, allowing for the proper design of performance parameters of TMD-based electronic and optoelectronic devices (VTH, on-/off-currents, field-effect mobility, photoresponsivity, and detectivity). In addition, by controlling the metal ions used, the p-doping level of TMD materials, which also influences their performance parameters, can be controlled. This interdisciplinary convergence research will allow for the successful integration of future layered semiconductor devices requiring extremely small and very complicated structures.


Advanced Materials | 2016

Broad Detection Range Rhenium Diselenide Photodetector Enhanced by (3‐Aminopropyl)Triethoxysilane and Triphenylphosphine Treatment

Seo-Hyeon Jo; Hyung-Youl Park; Dong-Ho Kang; Jaewoo Shim; Jaeho Jeon; Seung-Hyuk Choi; Minwoo Kim; Yongkook Park; Jaehyeong Lee; Young Jae Song; Sungjoo Lee; Jin-Hong Park

The effects of triphenylphosphine and (3-aminopropyl)triethoxysilane on a rhenium diselenide (ReSe2 ) photodetector are systematically studied by comparing with conventional MoS2 devices. This study demonstrates a very high performance ReSe2 photodetector with high photoresponsivity (1.18 × 10(6) A W(-1) ), fast photoswitching speed (rising/decaying time: 58/263 ms), and broad photodetection range (possible above 1064 nm).


Advanced Materials | 2016

Extremely Large Gate Modulation in Vertical Graphene/WSe2 Heterojunction Barristor Based on a Novel Transport Mechanism

Jaewoo Shim; Hyo Seok Kim; Yoon Su Shim; Dong-Ho Kang; Hyung-Youl Park; Jaehyeong Lee; Jaeho Jeon; Seong Jun Jung; Young Jae Song; Woo-Shik Jung; Jaeho Lee; Seongjun Park; Jeehwan Kim; Sungjoo Lee; Yong-Hoon Kim; Jin-Hong Park

A WSe2 -based vertical graphene-transition metal dichalcogenide heterojunction barristor shows an unprecedented on-current increase with decreasing temperature and an extremely high on/off-current ratio of 5 × 10(7) at 180 K (3 × 10(4) at room temperature). These features originate from a trap-assisted tunneling process involving WSe2 defect states aligned near the graphene Dirac point.


Applied Physics Letters | 2009

Bulk and Interface effects on voltage linearity of ZrO2–SiO2 multilayered metal-insulator-metal capacitors for analog mixed-signal applications

Sungwoo Park; C.-Y. Park; D. C. Gilmer; Hyung-Youl Park; C. Y. Kang; K. Y. Lim; C. Burham; Joel Barnett; P. D. Kirsch; H.-H. Tseng; R. Jammy; Geun Young Yeom

Quadratic voltage coefficient of capacitance (VCC) for ZrO2–SiO2 multilayered dielectric metal-insulator-metal capacitors depends strongly on the stacking sequence of the layered dielectrics. The quadratic VCC of an optimized SiO2/ZrO2/SiO2 stack and ZrO2/SiO2/ZrO2 stack were +42 and −1094 ppm/V2, respectively, despite the same total SiO2 and ZrO2 dielectric thickness in the stack. The observed difference in quadratic VCC depending on dielectric stacking sequence is explained by taking into account both the interface and bulk dielectric responses to the applied voltage.


Scientific Reports | 2016

Ultra-low Doping on Two-Dimensional Transition Metal Dichalcogenides using DNA Nanostructure Doped by a Combination of Lanthanide and Metal Ions.

Dong-Ho Kang; Sreekantha Reddy Dugasani; Hyung-Youl Park; Jaewoo Shim; Bramaramba Gnapareddy; Jaeho Jeon; Sungjoo Lee; Yonghan Roh; Sung Ha Park; Jin-Hong Park

Here, we propose a novel DNA-based doping method on MoS2 and WSe2 films, which enables ultra-low n- and p-doping control and allows for proper adjustments in device performance. This is achieved by selecting and/or combining different types of divalent metal and trivalent lanthanide (Ln) ions on DNA nanostructures, using the newly proposed concept of Co-DNA (DNA functionalized by both divalent metal and trivalent Ln ions). The available n-doping range on the MoS2 by Ln-DNA is between 6 × 109 and 2.6 × 1010 cm−2. The p-doping change on WSe2 by Ln-DNA is adjusted between −1.0 × 1010 and −2.4 × 1010 cm−2. In Eu3+ or Gd3+-Co-DNA doping, a light p-doping is observed on MoS2 and WSe2 (~1010 cm−2). However, in the devices doped by Tb3+ or Er3+-Co-DNA, a light n-doping (~1010 cm−2) occurs. A significant increase in on-current is also observed on the MoS2 and WSe2 devices, which are, respectively, doped by Tb3+- and Gd3+-Co-DNA, due to the reduction of effective barrier heights by the doping. In terms of optoelectronic device performance, the Tb3+ or Er3+-Co-DNA (n-doping) and the Eu3+ or Gd3+-Co-DNA (p-doping) improve the MoS2 and WSe2 photodetectors, respectively. We also show an excellent absorbing property by Tb3+ ions on the TMD photodetectors.


Scientific Reports | 2016

M-DNA/Transition Metal Dichalcogenide Hybrid Structure-based Bio-FET sensor with Ultra-high Sensitivity

Hyung-Youl Park; Sreekantha Reddy Dugasani; Dong-Ho Kang; Gwangwe Yoo; Jinok Kim; Bramaramba Gnapareddy; Jaeho Jeon; Minwoo Kim; Young Jae Song; Sungjoo Lee; Jonggon Heo; Young Jin Jeon; Sung Ha Park; Jin-Hong Park

Here, we report a high performance biosensor based on (i) a Cu2+-DNA/MoS2 hybrid structure and (ii) a field effect transistor, which we refer to as a bio-FET, presenting a high sensitivity of 1.7 × 103 A/A. This high sensitivity was achieved by using a DNA nanostructure with copper ions (Cu2+) that induced a positive polarity in the DNA (receptor). This strategy improved the detecting ability for doxorubicin-like molecules (target) that have a negative polarity. Very short distance between the biomolecules and the sensor surface was obtained without using a dielectric layer, contributing to the high sensitivity. We first investigated the effect of doxorubicin on DNA/MoS2 and Cu2+-DNA/MoS2 nanostructures using Raman spectroscopy and Kelvin force probe microscopy. Then, we analyzed the sensing mechanism and performance in DNA/MoS2- and Cu2+-DNA/MoS2-based bio-FETs by electrical measurements (ID-VG at various VD) for various concentrations of doxorubicin. Finally, successful operation of the Cu2+-DNA/MoS2 bio-FET was demonstrated for six cycles (each cycle consisted of four steps: 2 preparation steps, a sensing step, and an erasing step) with different doxorubicin concentrations. The bio-FET showed excellent reusability, which has not been achieved previously in 2D biosensors.


ACS Applied Materials & Interfaces | 2017

Poly-4-vinylphenol (PVP) and Poly(melamine-co-formaldehyde) (PMF)-Based Atomic Switching Device and Its Application to Logic Gate Circuits with Low Operating Voltage

Dong-Ho Kang; Woo-Young Choi; Hyunsuk Woo; Sung-kyu Jang; Hyung-Youl Park; Jaewoo Shim; Jae-Woong Choi; Sungho Kim; Sanghun Jeon; Sungjoo Lee; Jin-Hong Park

In this study, we demonstrate a high-performance solid polymer electrolyte (SPE) atomic switching device with low SET/RESET voltages (0.25 and -0.5 V, respectively), high on/off-current ratio (105), excellent cyclic endurance (>103), and long retention time (>104 s), where poly-4-vinylphenol (PVP)/poly(melamine-co-formaldehyde) (PMF) is used as an SPE layer. To accomplish these excellent device performance parameters, we reduce the off-current level of the PVP/PMF atomic switching device by improving the electrical insulating property of the PVP/PMF electrolyte through adjustment of the number of cross-linked chains. We then apply a titanium buffer layer to the PVP/PMF switching device for further improvement of bipolar switching behavior and device stability. In addition, we first implement SPE atomic switch-based logic AND and OR circuits with low operating voltages below 2 V by integrating 5 × 5 arrays of PVP/PMF switching devices on the flexible substrate. In particular, this low operating voltage of our logic circuits was much lower than that (>5 V) of the circuits configured by polymer resistive random access memory. This research successfully presents the feasibility of PVP/PMF atomic switches for flexible integrated circuits for next-generation electronic applications.


Advanced Materials | 2016

Graphene: Extremely Low Contact Resistance on Graphene through n-Type Doping and Edge Contact Design (Adv. Mater. 5/2016)

Hyung-Youl Park; Woo-Shik Jung; Dong-Ho Kang; Jaeho Jeon; Gwangwe Yoo; Yongkook Park; Jinhee Lee; Yun Hee Jang; Jaeho Lee; Seongjun Park; Hyun-Yong Yu; Byungha Shin; Sungjoo Lee; Jin-Hong Park

The effects of graphene n-doping on metal-graphene (M-G) contacts in combination with 1D edge contacts is discussed by J.-H. Park and co-workers, as described on page 864, presenting a record contact resistance of 23 Ω μm at room temperature (19 Ω μm at 100 K). This is lower than the value required for the latest Si CMOS technology. This contact scheme is applied to graphene-perovskite hybrid photo-detectors, significantly improvement of its performance (0.6 → 1.8 A W(-1) in photoresponsivity and 3.3 × 10(4) → 5.4 × 10(4) Jones in detectivity).


Advanced Materials | 2016

Photodetectors: Broad Detection Range Rhenium Diselenide Photodetector Enhanced by (3-Aminopropyl)Triethoxysilane and Triphenylphosphine Treatment (Adv. Mater. 31/2016).

Seo-Hyeon Jo; Hyung-Youl Park; Dong-Ho Kang; Jaewoo Shim; Jaeho Jeon; Seung-Hyuk Choi; Minwoo Kim; Yongkook Park; Jaehyeong Lee; Young Jae Song; Sungjoo Lee; Jin-Hong Park

The effects of triphenylphosphine (PPh3 ) and (3-amino-propyl)triethoxysilane (APTES) on a rhenium diselenide (ReSe2 ) photodetector are systematically studied by J.-H. Park and co-workers on page 6711 in comparison with a conventional MoS2 device. A very high performance ReSe2 photodetector is demonstrated, which has a broad photodetection range, high photoresponsivity (1.18 × 10(6) A W(-1) ), and fast photoswitching speed (rising/decaying time: 58/263 ms).

Collaboration


Dive into the Hyung-Youl Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong-Ho Kang

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Sungjoo Lee

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Jaewoo Shim

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Jaeho Jeon

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gwangwe Yoo

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Seo-Hyeon Jo

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge