I. J. Rae
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I. J. Rae.
Journal of Geophysical Research | 2001
D. M. Wright; T. K. Yeoman; I. J. Rae; J. Storey; A. B. Stockton-Chalk; J. L. Roeder; K. J. Trattner
Multi-instrument observations of a Pg pulsation, which occurred on the morning of May 16, 1998, are reported. The wave signature was observed simultaneously on the ground, by the International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer network and in the ionosphere by the Doppler Pulsation Experiment (DOPE) high resolution HF Doppler sounder. The wave occurred in the morning sector and possessed an azimuthal wave number, m, of 30±5 with a westward phase propagation. Shortly before the Pg commenced, energetic particle instruments on board the Polar spacecraft detected protons with a non-Maxwellian energy distribution drifting westward toward the location of IMAGE and DOPE. An investigation has been undertaken to determine whether these particles were involved in the wave-particle interaction considered responsible for generating the Pg pulsation. Proton energies of around 7 keV, which occur at the low-energy edge of the unstable distribution (where ∂ƒ/∂W>0), satisfy the drift-bounce resonance relation, ω − mωd, for N=1. This result indicates that this particular wave is likely to be the result of a drift-bounce resonance mechanism and that it has an even mode standing wave structure in the magnetosphere. This result is discussed in terms of previous observations of Pgs.
Journal of Geophysical Research | 2015
N. M. E. Kalmoni; I. J. Rae; C. E. J. Watt; Kyle R. Murphy; C. Forsyth; C. J. Owen
Abstract We present the first multievent study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near‐Earth plasma instability which causes the substorm onset arc. Using data from ground‐based auroral imagers, we study repeatable signatures of along‐arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near‐Earth plasma sheet. We show that the growth and spatial scales of these wave‐like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wave number with the most unstable spatial scales mapping to an azimuthal wavelength λ≈ 1700–2500 km in the equatorial magnetosphere at around 9–12 R E. We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the Cross‐Field Current Instability and the Shear Flow Ballooning Instability. We conclude that, although the Cross‐Field Current instability can generate similar magnitude of growth rates, the range of unstable wave numbers indicates that the Shear Flow Ballooning Instability is the most likely explanation for our observations.
Journal of Geophysical Research | 2014
Zhonghua Yao; Zuyin Pu; C. J. Owen; Suiyan Fu; Xiangning Chu; Jiang Liu; V. Angelopoulos; I. J. Rae; Chao Yue; X.-Z. Zhou; Qiugang Zong; Xihua Cao; Q. Q. Shi; C. Forsyth; Aimin Du
Pseudo-breakup events are thought to be generated by the same physical processes as substorms. This paper reports on the cross-tail current reduction in an isolated pseudo-breakup observed by three of the THEMIS probes (THEMIS A (THA), THEMIS D (THD), and THEMIS E (THE)) on 22 March 2010. During this pseudo-breakup, several localized auroral intensifications were seen by ground-based observatories. Using the unique spatial configuration of the three THEMIS probes, we have estimated the inertial and diamagnetic currents in the near-Earth plasma sheet associated with flow braking and diversion. We found the diamagnetic current to be the major contributor to the current reduction in this pseudo-breakup event. During flow braking, the plasma pressure was reinforced, and a weak electrojet and an auroral intensification appeared. After flow braking/diversion, the electrojet was enhanced, and a new auroral intensification was seen. The peak current intensity of the electrojet estimated from ground-based magnetometers, ~0.7 × 105 A, was about 1 order of magnitude lower than that in a typical substorm. We suggest that this pseudo-breakup event involved two dynamical processes: a current-reduction associated with plasma compression ahead of the earthward flow and a current-disruption related to the flow braking/diversion. Both processes are closely connected to the fundamental interaction between fast flows, the near-Earth ambient plasma, and the magnetic field.
Journal of Geophysical Research | 2016
C. Forsyth; I. J. Rae; Kyle R. Murphy; M. P. Freeman; C.-L. Huang; Harlan E. Spence; A. J. Boyd; J. C. Coxon; C. M. Jackman; N. M. E. Kalmoni; C. E. J. Watt
Abstract Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV “seed” population into the inner magnetosphere which is subsequently energized through wave‐particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negative median change in TRBEC at all intervals following substorms and quiet intervals. However, there are up to 3 times as many increases in TRBEC following substorm intervals. There is a lag of 1–3 days between the substorm or quiet intervals and their greatest effect on radiation belt content, shown in the difference between the occurrence of increases and losses in TRBEC following substorms and quiet intervals, the mean change in TRBEC following substorms or quiet intervals, and the cross correlation between SuperMAG AL (SML) and TRBEC. However, there is a statistically significant effect on the occurrence of increases and decreases in TRBEC up to a lag of 6 days. Increases in radiation belt content show a significant correlation with SML and SYM‐H, but decreases in the radiation belt show no apparent link with magnetospheric activity levels.
Journal of Geophysical Research | 2017
Zhonghua Yao; I. J. Rae; R. L. Guo; Andrew N. Fazakerley; C. J. Owen; R. Nakamura; W. Baumjohann; C. E. J. Watt; K.-J. Hwang; B. L. Giles; C. T. Russell; R. B. Torbert; A. Varsani; Huishan Fu; Q. Q. Shi; X.-J. Zhang
Energy conversion on the dipolarization fronts (DFs) has attracted much research attention through the suggestion that intense current densities associated with DFs can modify the more global magnetotail current system. The current structures associated with a DF are at the scale of one to a few ion gyroradii, and their duration is comparable to a spacecrafts spin period. Hence, it is crucial to understand the physical mechanisms of DFs with measurements at a timescale shorter than a spin period. We present a case study whereby we use measurements from the Magnetospheric Multiscale (MMS) Mission, which provides full 3-D particle distributions with a cadence much shorter than a spin period. We provide a cross validation amongst the current density calculations and examine the assumptions that have been adopted in previous literature using the advantages of MMS mission (i.e., small-scale tetrahedron and high temporal resolution). We also provide a cross validation on the terms in the generalized Ohms law using these advantageous measurements. Our results clearly show that the majority of the currents on the DF are contributed by both ion and electron diamagnetic drifts. Our analysis also implies that the ion frozen-in condition does not hold on the DF, while electron frozen-in condition likely holds. The new experimental capabilities allow us to accurately calculate Joule heating within the DF, which shows that plasma energy is being converted to magnetic energy in our event.
The Astrophysical Journal | 2017
Zhonghua Yao; A. J. Coates; L. C. Ray; I. J. Rae; Denis Grodent; Geraint H. Jones; Michele K. Dougherty; C. J. Owen; R. L. Guo; W. R. Dunn; Aikaterini Radioti; Z. Y. Pu; G. R. Lewis; J. H. Waite; Jean-Claude Gérard
Using measurements from the Cassini spacecraft in Saturns magnetosphere, we propose a 3D physical picture of a corotating reconnection site, which can only be driven by an internally generated source. Our results demonstrate that the corotating magnetic reconnection can drive an expansion of the current sheet in Saturns magnetosphere and, consequently, can produce Fermi acceleration of electrons. This reconnection site lasted for longer than one of Saturns rotation period. The long-lasting and corotating natures of the magnetic reconnection site at Saturn suggest fundamentally different roles of magnetic reconnection in driving magnetospheric dynamics (e.g., the auroral precipitation) from the Earth. Our corotating reconnection picture could also potentially shed light on the fast rotating magnetized plasma environments in the solar system and beyond.
Journal of Geophysical Research | 2017
C. Forsyth; I. J. Rae; Ian R. Mann; I. P. Pakhotin
Field-aligned currents (FACs) are a fundamental component of coupled solar wind-magnetosphere-ionosphere. By assuming that FACs can be approximated by stationary infinite current sheets that do not change on the spacecraft crossing time, single-spacecraft magnetic field measurements can be used to estimate the currents flowing in space. By combining data from multiple spacecraft on similar orbits, these stationarity assumptions can be tested. In this technical report, we present a new technique that combines cross correlation and linear fitting of multiple spacecraft measurements to determine the reliability of the FAC estimates. We show that this technique can identify those intervals in which the currents estimated from single-spacecraft techniques are both well correlated and have similar amplitudes, thus meeting the spatial and temporal stationarity requirements. Using data from European Space Agencys Swarm mission from 2014 to 2015, we show that larger-scale currents (>450km) are well correlated and have a one-to-one fit up to 50% of the time, whereas small-scale (<50km) currents show similar amplitudes only ~1% of the time despite there being a good correlation 18% of the time. It is thus imperative to examine both the correlation and amplitude of the calculated FACs in order to assess both the validity of the underlying assumptions and hence ultimately the reliability of such single-spacecraft FAC estimates. PLAIN LANGUAGE SUMMARY: Electric currents flowing along the Earths magnetic field link the stream of particles coming off the Sun with the Earths upper atmosphere and allowing the Earth to gain energy from this interaction. These currents have a multitude of widths, with the widest currents being linked to the circulation of charged particles in Earths upper atmosphere and the narrowest being associated with bright aurora. Detecting the currents directly is very challenging; however, in principle, the currents can be measured by detecting the magnetic field associated with them using spacecraft orbiting the Earth. This type of detection requires a number of assumptions to be made in order to calculate the strengths of the currents from the measured magnetic field. Using multispacecraft observations, these assumptions can be tested. In this paper, we examine a new way of comparing the currents estimated from two coorbiting spacecraft to determine when and where our estimates of these currents is most reliable.
Geophysical Research Letters | 2017
N. M. E. Kalmoni; I. J. Rae; Kyle R. Murphy; C. Forsyth; C. E. J. Watt; C. J. Owen
The onset of an auroral substorm is generally thought to occur on a quiet, homogeneous auroral arc. We present a statistical study of independently selected substorm onset arcs and find that over 90% of the arcs studied have resolvable characteristic spatial scales in the form of auroral beads. We find that the vast majority (~88%) of auroral beads have small amplitudes relative to the background, making them invisible without quantitative analysis. This confirms that auroral beads are highly likely to be ubiquitous to all onset arcs, rather than a special case phenomena as previously thought. Moreover, as these auroral beads grow exponentially through onset, we conclude that a magnetospheric plasma instability is fundamental to substorm onset itself.
Journal of Geophysical Research | 2017
Zhonghua Yao; Denis Grodent; L. C. Ray; I. J. Rae; A. J. Coates; Z. Y. Pu; A. T. Y. Lui; Aikaterini Radioti; J. H. Waite; G. H. Jones; R. L. Guo; W. R. Dunn
Solar wind energy is transferred to planetary magnetospheres via magnetopause reconnection, driving magnetospheric dynamics. At giant planets like Saturn, rapid rotation and internal plasma sources from geologically active moons also drive magnetospheric dynamics. In both cases, magnetic energy is regularly released via magnetospheric current redistributions that usually result in a change of the global magnetic field topology (named substorm dipolarization at Earth). Besides this substorm dipolarization, the front boundary of the reconnection outflow can also lead to a strong but localized magnetic dipolarization, named a reconnection front. The enhancement of the north-south magnetic component is usually adopted as the indicator of magnetic dipolarization. However, this field increase alone cannot distinguish between the two fundamentally different mechanisms. Using measurements from Cassini, we present multiple cases whereby we identify the two distinct types of dipolarization at Saturn. A comparison between Earth and Saturn provides new insight to revealing the energy dissipation in planetary magnetospheres.
Journal of Geophysical Research | 2017
Zhonghua Yao; I. J. Rae; A. T. Y. Lui; Kyle R. Murphy; C. J. Owen; Z. Y. Pu; C. Forsyth; Denis Grodent; Q.-G. Zong; Aimin Du; N. M. E. Kalmoni
A multiple auroral onset substorm on 28 March 2010 provides an opportunity to understand the physical mechanism in generating auroral intensifications during a substorm expansion phase. Conjugate observations of magnetic fields and plasma from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, of field-aligned currents (FACs) from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) satellites, and from ground-based magnetometers and aurora are all available. The comprehensive measurements allow us to further our understanding of the complicated causalities amongst dipolarization, FAC generation, particle acceleration and auroral intensification. During the substorm expansion phase, the plasma sheet expanded and was perturbed leading to the generation of a slow mode wave, which modulated electron flux in the outer plasma sheet. During this current sheet expansion, field-aligned currents formed, and geomagnetic perturbations were simultaneously detected by ground-based instruments. However, a magnetic dipolarization did not occur until about 3 minutes later in the outer plasma sheet observed by THEMIS-A spacecraft (THA). We believe this dipolarization led to an efficient Fermi acceleration to electrons, and consequently the cause of a significant auroral intensification during the expansion phase as observed by the All-Sky Imagers (ASIs). This Fermi acceleration mechanism operating efficiently in the outer plasma sheet during the expansion phase could be a common explanation of the poleward auroral development after substorm onset. These results also show a good agreement between the upward FAC derived from AMPERE measurements and the auroral brightening observed by the ASIs.