N. M. E. Kalmoni
University College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by N. M. E. Kalmoni.
Journal of Geophysical Research | 2015
N. M. E. Kalmoni; I. J. Rae; C. E. J. Watt; Kyle R. Murphy; C. Forsyth; C. J. Owen
Abstract We present the first multievent study of the spatial and temporal structuring of the aurora to provide statistical evidence of the near‐Earth plasma instability which causes the substorm onset arc. Using data from ground‐based auroral imagers, we study repeatable signatures of along‐arc auroral beads, which are thought to represent the ionospheric projection of magnetospheric instability in the near‐Earth plasma sheet. We show that the growth and spatial scales of these wave‐like fluctuations are similar across multiple events, indicating that each sudden auroral brightening has a common explanation. We find statistically that growth rates for auroral beads peak at low wave number with the most unstable spatial scales mapping to an azimuthal wavelength λ≈ 1700–2500 km in the equatorial magnetosphere at around 9–12 R E. We compare growth rates and spatial scales with a range of theoretical predictions of magnetotail instabilities, including the Cross‐Field Current Instability and the Shear Flow Ballooning Instability. We conclude that, although the Cross‐Field Current instability can generate similar magnitude of growth rates, the range of unstable wave numbers indicates that the Shear Flow Ballooning Instability is the most likely explanation for our observations.
Geophysical Research Letters | 2014
C. Forsyth; Clare Watt; Iain J. Rae; Andrew N. Fazakerley; N. M. E. Kalmoni; M. P. Freeman; Peter D. Boakes; Rumi Nakamura; Iannis Dandouras; L. M. Kistler; C. M. Jackman; J. C. Coxon; C. M. Carr
During substorm growth phases, magnetic reconnection at the magnetopause extracts ∼1015 J from the solar wind which is then stored in the magnetotail lobes. Plasma sheet pressure increases to balance magnetic flux density increases in the lobes. Here we examine plasma sheet pressure, density, and temperature during substorm growth phases using 9 years of Cluster data (>316,000 data points). We show that plasma sheet pressure and temperature are higher during growth phases with higher solar wind driving, whereas the density is approximately constant. We also show a weak correlation between plasma sheet temperature before onset and the minimum SuperMAG AL (SML) auroral index in the subsequent substorm. We discuss how energization of the plasma sheet before onset may result from thermodynamically adiabatic processes; how hotter plasma sheets may result in magnetotail instabilities, and how this relates to the onset and size of the subsequent substorm expansion phase.
Journal of Geophysical Research | 2016
C. Forsyth; I. J. Rae; Kyle R. Murphy; M. P. Freeman; C.-L. Huang; Harlan E. Spence; A. J. Boyd; J. C. Coxon; C. M. Jackman; N. M. E. Kalmoni; C. E. J. Watt
Abstract Substorms are fundamental and dynamic processes in the magnetosphere, converting captured solar wind magnetic energy into plasma energy. These substorms have been suggested to be a key driver of energetic electron enhancements in the outer radiation belts. Substorms inject a keV “seed” population into the inner magnetosphere which is subsequently energized through wave‐particle interactions up to relativistic energies; however, the extent to which substorms enhance the radiation belts, either directly or indirectly, has never before been quantified. In this study, we examine increases and decreases in the total radiation belt electron content (TRBEC) following substorms and geomagnetically quiet intervals. Our results show that the radiation belts are inherently lossy, shown by a negative median change in TRBEC at all intervals following substorms and quiet intervals. However, there are up to 3 times as many increases in TRBEC following substorm intervals. There is a lag of 1–3 days between the substorm or quiet intervals and their greatest effect on radiation belt content, shown in the difference between the occurrence of increases and losses in TRBEC following substorms and quiet intervals, the mean change in TRBEC following substorms or quiet intervals, and the cross correlation between SuperMAG AL (SML) and TRBEC. However, there is a statistically significant effect on the occurrence of increases and decreases in TRBEC up to a lag of 6 days. Increases in radiation belt content show a significant correlation with SML and SYM‐H, but decreases in the radiation belt show no apparent link with magnetospheric activity levels.
Geophysical Research Letters | 2017
N. M. E. Kalmoni; I. J. Rae; Kyle R. Murphy; C. Forsyth; C. E. J. Watt; C. J. Owen
The onset of an auroral substorm is generally thought to occur on a quiet, homogeneous auroral arc. We present a statistical study of independently selected substorm onset arcs and find that over 90% of the arcs studied have resolvable characteristic spatial scales in the form of auroral beads. We find that the vast majority (~88%) of auroral beads have small amplitudes relative to the background, making them invisible without quantitative analysis. This confirms that auroral beads are highly likely to be ubiquitous to all onset arcs, rather than a special case phenomena as previously thought. Moreover, as these auroral beads grow exponentially through onset, we conclude that a magnetospheric plasma instability is fundamental to substorm onset itself.
Journal of Geophysical Research | 2017
Zhonghua Yao; I. J. Rae; A. T. Y. Lui; Kyle R. Murphy; C. J. Owen; Z. Y. Pu; C. Forsyth; Denis Grodent; Q.-G. Zong; Aimin Du; N. M. E. Kalmoni
A multiple auroral onset substorm on 28 March 2010 provides an opportunity to understand the physical mechanism in generating auroral intensifications during a substorm expansion phase. Conjugate observations of magnetic fields and plasma from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft, of field-aligned currents (FACs) from the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE) satellites, and from ground-based magnetometers and aurora are all available. The comprehensive measurements allow us to further our understanding of the complicated causalities amongst dipolarization, FAC generation, particle acceleration and auroral intensification. During the substorm expansion phase, the plasma sheet expanded and was perturbed leading to the generation of a slow mode wave, which modulated electron flux in the outer plasma sheet. During this current sheet expansion, field-aligned currents formed, and geomagnetic perturbations were simultaneously detected by ground-based instruments. However, a magnetic dipolarization did not occur until about 3 minutes later in the outer plasma sheet observed by THEMIS-A spacecraft (THA). We believe this dipolarization led to an efficient Fermi acceleration to electrons, and consequently the cause of a significant auroral intensification during the expansion phase as observed by the All-Sky Imagers (ASIs). This Fermi acceleration mechanism operating efficiently in the outer plasma sheet during the expansion phase could be a common explanation of the poleward auroral development after substorm onset. These results also show a good agreement between the upward FAC derived from AMPERE measurements and the auroral brightening observed by the ASIs.
Geoscience Letters | 2017
I. J. Rae; Kyle R. Murphy; C. E. J. Watt; Ian R. Mann; Zhonghua Yao; N. M. E. Kalmoni; C. Forsyth; David K. Milling
Substorm onset is marked in the ionosphere by the sudden brightening of an existing auroral arc or the creation of a new auroral arc. Also present is the formation of auroral beads, proposed to play a key role in the detonation of the substorm, as well as the development of the large-scale substorm current wedge (SCW), invoked to carry the current diversion. Both these phenomena, auroral beads and the SCW, have been intimately related to ultra-low frequency (ULF) waves of specific frequencies as observed by ground-based magnetometers. We present a case study of the absolute and relative timing of Pi1 and Pi2 ULF wave bands with regard to a small substorm expansion phase onset. We find that there is both a location and frequency dependence for the onset of ULF waves. A clear epicentre is observed in specific wave frequencies concurrent with the brightening of the substorm onset arc and the presence of “auroral beads”. At higher and lower wave frequencies, different epicentre patterns are revealed, which we conclude demonstrate different characteristics of the onset process; at higher frequencies, this epicentre may demonstrate phase mixing, and at intermediate and lower frequencies these epicentres are characteristic of auroral beads and cold plasma approximation of the “Tamao travel time” from near-earth neutral line reconnection and formation of the SCW.
The Astrophysical Journal | 2018
Magnus M. Woods; Satoshi Inoue; Louise K. Harra; S. A. Matthews; Kanya Kusano; N. M. E. Kalmoni
The X1 flare and associated filament eruption occurring in NOAA Active Region 12017 on SOL2014-03-29 has been a source of intense study. In this work, we analyze the results of a series of nonlinear force-free field extrapolations of the flares pre- and post-flare periods. In combination with observational data provided by the IRIS, Hinode, and Solar Dynamics Observatory missions, we have confirmed the existence of two flux ropes present within the active region prior to flaring. Of these two flux ropes, we find that intriguingly only one erupts during the X1 flare. We propose that the reason for this is due to tether cutting reconnection allowing one of the flux ropes to rise to a torus unstable region prior to flaring, thus allowing it to erupt during the subsequent flare.
Journal of Geophysical Research | 2018
C. Forsyth; M. Shortt; J. C. Coxon; I. J. Rae; M. P. Freeman; N. M. E. Kalmoni; C. M. Jackman; Brian J. Anderson; S. E. Milan; A. G. Burrell
Field-aligned currents (FACs), also known as Birkeland currents, are the agents by which energy and momentum are transferred to the ionosphere from the magnetosphere and solar wind. This coupling is enhanced at substorm onset through the formation of the substorm current wedge. Using FAC data from the Active Magnetosphere and Planetary Electrodynamics Response Experiment and substorm expansion phase onsets identified using the Substorm Onsets and Phases from Indices of the Electrojet technique, we examine the Northern Hemisphere FACs in all local time sectors with respect to substorm onset and subdivided by season. Our results show that while there is a strong seasonal dependence on the underlying FACs, the increase in FACs following substorm onset only varies by 10% with season, with substorms increasing the hemispheric FACs by 420 kA on average. Over an hour prior to substorm onset, the dayside currents in the postnoon quadrant increase linearly, whereas the nightside currents show a linear increase starting 20-30 min before onset. After onset, the nightside Region 1, Region 2, and nonlocally closed currents and the SuperMAG AL (SML) index follow the Weimer (1994, https://doi.org/10.1029/93JA02721) model with the same time constants in each season. These results contrast earlier contradictory studies that indicate that substorms are either longer in the summer or decay faster in the summer. Our results imply that, on average, substorm FACs do not change with season but that their relative impact on the coupled magnetosphere-ionosphere system does due to the changes in the underlying currents.
Journal of Geophysical Research | 2017
Zhonghua Yao; I. J. Rae; A. T. Y. Lui; Kyle R. Murphy; C. J. Owen; Z. Y. Pu; C. Forsyth; Denis Grodent; Q.-G. Zong; Aimin Du; N. M. E. Kalmoni
Geophysical Research Letters | 2017
N. M. E. Kalmoni; I. J. Rae; Kyle R. Murphy; C. Forsyth; C. E. J. Watt; C. J. Owen