I-Kai Hsu
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I-Kai Hsu.
Nano Letters | 2009
I-Kai Hsu; Michael T. Pettes; Adam Bushmaker; Mehmet Aykol; Li Shi; Stephen B. Cronin
A focused laser beam is used to heat individual single-walled carbon nanotube bundles bridging two suspended microthermometers. By measurement of the temperature rise of the two thermometers, the optical absorption of 7.4-10.3 nm diameter bundles is found to be between 0.03 and 0.44% of the incident photons in the 0.4 microm diameter laser spot. The thermal conductance of the bundle is obtained with the additional measurement of the temperature rise of the nanotubes in the laser spot from shifts in the Raman G band frequency. According to the nanotube bundle diameter determined by transmission electron microscopy, the thermal conductivity is obtained.
Applied Physics Letters | 2008
I-Kai Hsu; Rajay Kumar; Adam Bushmaker; Stephen B. Cronin; Michael T. Pettes; Li Shi; Todd Brintlinger; Michael S. Fuhrer; John Cumings
Thermal transport in carbon nanotubes is explored using different laser powers to heat suspended single-walled carbon nanotubes ∼5μm in length. The temperature change along the length of a nanotube is determined from the temperature-induced shifts in the G band Raman frequency. The spatial temperature profile reveals the ratio of the contact thermal resistance to the intrinsic thermal resistance of the nanotube. Moreover, the obtained temperature profiles allow differentiation between diffusive and ballistic phonon transport. Diffusive transport is observed in all nanotubes measured and the ratio of thermal contact resistance to intrinsic nanotube thermal resistance is found to range from 0.02 to 17.
Nano Letters | 2011
Insun Jo; I-Kai Hsu; Yong Ju Lee; Mir Mohammad Sadeghi; Seyoung Kim; Stephen B. Cronin; Emanuel Tutuc; Sanjay K. Banerjee; Zhen Yao; Li Shi
On the basis of scanning thermal microscopy (SThM) measurements in contact and lift modes, the low-frequency acoustic phonon temperature in electrically biased, 6.7-9.7 μm long graphene channels is found to be in equilibrium with the anharmonic scattering temperature determined from the Raman 2D peak position. With ∼100 nm scale spatial resolution, the SThM reveals the shifting of local hot spots corresponding to low-carrier concentration regions with the bias and gate voltages in these much shorter samples than those exhibiting similar behaviors in the infrared emission maps.
ACS Nano | 2010
Chia-Chi Chang; I-Kai Hsu; Mehmet Aykol; Wei-Hsuan Hung; Chun-Chung Chen; Stephen B. Cronin
We apply immense strain to ultralong, suspended, single-walled carbon nanotubes while monitoring their Raman spectra. We can achieve strains up to 13.7 ± 0.3% without slippage, breakage, or defect formation based on the observation of reversible change in Raman spectra. This is more than twice that of previous observations. The rate of G band downshift with strain is found to span a wide range from -6.2 to -23.6 cm(-1)/% strain. Under these immense strains, the G band is observed to downshift by up to 157 cm(-1) (from 1592 to 1435 cm(-1)). Interestingly, under these significant lattice distortions, we observe no detectable D band Raman intensity. Also, we do not observe any broadening of the G band line width until a threshold downshift of Δω(G) > 75 cm(-1) is achieved at high strains, beyond which the fwhm of the G band increases sharply and reversibly. On the basis of a theoretical nonlinear stress-strain response, we estimate the maximum applied stress of the nanotubes in this study to be 99 GPa with a strength-to-weight ratio of almost 74,000 kN x m/kg, which is 30 times that of Kevlar and 117 times that of steel.
Journal of Applied Physics | 2013
Prathamesh Pavaskar; I-Kai Hsu; Jesse Theiss; Wei Hsuan Hung; Stephen B. Cronin
Thin Au and Ag evaporated films (∼5 nm) are known to form island-like growth, which exhibit a strong plasmonic response under visible illumination. In this work, evaporated thin films are imaged with high resolution transmission electron microscopy, to reveal the structure of the semicontinuous metal island film with sub-nm resolution. The electric field distributions and the absorption spectra of these semicontinuous island film geometries are then simulated numerically using the finite difference time domain method and compared with the experimentally measured absorption spectra. We find surface enhanced Raman scattering (SERS) enhancement factors as high as 108 in the regions of small gaps (≤2 nm), which dominate the electromagnetic response of these films. The small gap enhancement is further substantiated by a statistical analysis of the electric field intensity as a function of the nanogap size. Areal SERS enhancement factors of 4.2 × 104 are obtained for these films. These plasmonic films can also ...
Journal of Applied Physics | 2010
I-Kai Hsu; Michael T. Pettes; Mehmet Aykol; Li Shi; Stephen B. Cronin
We report micro-Raman spectroscopy measurements of the temperature distribution of current-carrying, 5 μm long, suspended carbon nanotubes in different gas environments near atmospheric pressure. At the same heating power, the measured G band phonon temperature of the nanotube is found to be significantly lower in gaseous environments than in vacuum. Theoretical analysis of these results suggests that about 50%–60% of the heat dissipated in the suspended nanotube is removed by its surrounding gas molecules, and that the thermal boundary conductance is higher in carbon dioxide than in nitrogen, argon, and helium, despite the lower thermal conductivity of carbon dioxide.
Journal of Applied Physics | 2011
I-Kai Hsu; Michael T. Pettes; Mehmet Aykol; Chia-Chi Chang; Wei-Hsuan Hung; Jesse Theiss; Li Shi; Stephen B. Cronin
A two-laser technique is used to investigate heat spreading along individual single walled carbon nanotube (SWCNT) bundles in vacuum and air environments. A 532 nm laser focused on the center of a suspended SWCNT bundle is used as a local heat source, and a 633 nm laser is used to measure the spatial temperature profile along the SWCNT bundle by monitoring the G band downshifts in the Raman spectra. A constant temperature gradient is observed when the SWCNT bundle is irradiated in vacuum, giving direct evidence of diffusive transport of the phonons probed by the Raman laser. In air, however, we observe an exponentially decaying temperature profile with a decay length of about 7 μm, due to heat dissipation from the SWCNT bundle to the surrounding gas molecules. The thermal conductivity of the suspended carbon nanotube (CNT) is determined from its electrical heating temperature profile as measured in vacuum and the nanotube bundle diameter measured via transmission electron microscopy. Based on the exponent...
Nano Letters | 2008
Wei Hsuan Hung; I-Kai Hsu; Adam Bushmaker; Rajay Kumar; Jesse Theiss; Stephen B. Cronin
We exploit the strong plasmon resonance of gold nanoparticles in the catalytic decomposition of CO to grow various forms of carbonaceous materials. Irradiating gold nanoparticles in a CO environment at their plasmon resonant frequency generates high temperatures and strong electric fields required to break the CO bond. By varying the laser power, exposure time, and gas flow rate, we deposit amorphous carbon, graphitic carbon, and carbon nanotubes. The formation of iron oxide nanocrystals catalyzes the growth of carbon nanotubes. Predefined microstructure geometries are patterned by moving the focused laser spot during the growth process, forming suspended single-walled carbon nanotube structures. Raman spectroscopy, energy dispersive X-ray spectroscopy, and transmission electron microscopy are used to characterize the resulting material. The localized nature of the plasmonic heating enables growth of these materials, while the underlying substrate remains at room temperature.
Nanotechnology | 2011
Chia-Chi Chang; Haitian Chen; Chun-Chung Chen; Wei-Hsuan Hung; I-Kai Hsu; Jesse Theiss; Chongwu Zhou; Stephen B. Cronin
We study the effect of polarized laser annealing on the crystalline structure of individual crystalline-amorphous core-shell silicon nanowires (NWs) using Raman spectroscopy. The crystalline fraction of the annealed spot increases dramatically from 0 to 0.93 with increasing incident laser power. We observe Raman lineshape narrowing and frequency hardening upon laser annealing due to the growth of the crystalline core, which is confirmed by high resolution transmission electron microscopy (HRTEM). The anti-Stokes:Stokes Raman intensity ratio is used to determine the local heating temperature caused by the intense focused laser, which exhibits a strong polarization dependence in Si NWs. The most efficient annealing occurs when the laser polarization is aligned along the axis of the NWs, which results in an amorphous-crystalline interface less than 0.5 µm in length. This paper demonstrates a new approach to control the crystal structure of NWs on the sub-micron length scale.
Journal of Micromechanics and Microengineering | 2011
Mehmet Aykol; William Branham; Zuwei Liu; Moh. R. Amer; I-Kai Hsu; Rohan Dhall; Shun-Wen Chang; Stephen B. Cronin
We characterize the nanoelectromechanical response of suspended individual carbon nanotubes under high voltage biases. An abrupt upshift in the mechanical resonance frequency of approximately 3 MHz is observed at high bias. While several possible mechanisms are discussed, this upshift is attributed to the onset of optical phonon emission, which results in a sudden contraction of the nanotube due to its negative thermal expansion coefficient. This, in turn, causes an increase in the tension in the suspended nanotube, which upshifts its mechanical resonance frequency. This upshift is consistent with Raman spectral measurements, which show a sudden downshift of the optical phonon modes at high bias voltages. Using a simple model for oscillations on a string, we estimate the effective change in the length of the nanotube to be ΔL/L ≈ −2 × 10−5 at a bias voltage of 1 V.