Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where I. Levchenko is active.

Publication


Featured researches published by I. Levchenko.


Advanced Materials | 2018

Hierarchical Multicomponent Inorganic Metamaterials: Intrinsically Driven Self‐Assembly at the Nanoscale

I. Levchenko; Kateryna Bazaka; Michael Keidar; Shuyan Xu; Jinghua Fang

Increasingly intricate in their composition and structural organization, hierarchical multicomponent metamaterials with nonlinear spatially reconfigurable functionalities challenge the intrinsic constraints of natural materials, revealing tremendous potential for the advancement of biochemistry, nanophotonics, and medicine. Recent breakthroughs in high-resolution nanofabrication utilizing ultranarrow, precisely controlled ion or laser beams have enabled assembly of architectures of unprecedented structural and functional complexity, yet costly, time- and energy-consuming high-resolution sequential techniques do not operate effectively at industry-required scale. Inspired by the fictional Baron Munchausens fruitless attempt to pull himself up, it is demonstrated that metamaterials can undergo intrinsically driven self-assembly, metaphorically pulling themselves up into existence. These internal drivers hold a key to unlocking the potential of metamaterials and mapping a new direction for the large-area, cost-efficient self-organized fabrication of practical devices. A systematic exploration of these efforts is presently missing, and the driving forces governing the intrinsically driven self-assembly are yet to be fully understood. Here, recent progress in the self-organized formation and self-propelled growth of complex hierarchical multicomponent metamaterials is reviewed, with emphasis on key principles, salient features, and potential limitations of this family of approaches. Special stress is placed on self-assembly driven by plasma, current in liquid, ultrasonic, and similar highly energetic effects, which enable self-directed formation of metamaterials with unique properties and structures.


Applied physics reviews | 2018

Space micropropulsion systems for Cubesats and small satellites: From proximate targets to furthermost frontiers

I. Levchenko; Kateryna Bazaka; Yongjie Ding; Yevgeny Raitses; Stéphane Mazouffre; Torsten Henning; Peter J. Klar; Shunjiro Shinohara; Jochen Schein; L. Garrigues; Min Kwan Kim; Dan R. Lev; Francesco Taccogna; Roderick Boswell; Christine Charles; Hiroyuki Koizumi; Yan Shen; Carsten Scharlemann; Michael Keidar; Shuyan Xu

Rapid evolution of miniaturized, automatic, robotized, function-centered devices has redefined space technology, bringing closer the realization of most ambitious interplanetary missions and intense near-Earth space exploration. Small unmanned satellites and probes are now being launched in hundreds at a time, resurrecting a dream of satellite constellations, i.e., wide, all-covering networks of small satellites capable of forming universal multifunctional, intelligent platforms for global communication, navigation, ubiquitous data mining, Earth observation, and many other functions, which was once doomed by the extraordinary cost of such systems. The ingression of novel nanostructured materials provided a solid base that enabled the advancement of these affordable systems in aspects of power, instrumentation, and communication. However, absence of efficient and reliable thrust systems with the capacity to support precise maneuvering of small satellites and CubeSats over long periods of deployment remains a real stumbling block both for the deployment of large satellite systems and for further exploration of deep space using a new generation of spacecraft. The last few years have seen tremendous global efforts to develop various miniaturized space thrusters, with great success stories. Yet, there are critical challenges that still face the space technology. These have been outlined at an inaugural International Workshop on Micropropulsion and Cubesats, MPCS-2017, a joint effort between Plasma Sources and Application Centre/Space Propulsion Centre (Singapore) and the Micropropulsion and Nanotechnology Lab, the G. Washington University (USA) devoted to miniaturized space propulsion systems, and hosted by CNR-Nanotec—P.Las.M.I. lab in Bari, Italy. This focused review aims to highlight the most promising developments reported at MPCS-2017 by leading world-reputed experts in miniaturized space propulsion systems. Recent advances in several major types of small thrusters including Hall thrusters, ion engines, helicon, and vacuum arc devices are presented, and trends and perspectives are outlined.


Nature Communications | 2018

Recent progress and perspectives of space electric propulsion systems based on smart nanomaterials

I. Levchenko; S. Xu; George Teel; Davide Mariotti; Mitchell L. R. Walker; Michael Keidar

Drastic miniaturization of electronics and ingression of next-generation nanomaterials into space technology have provoked a renaissance in interplanetary flights and near-Earth space exploration using small unmanned satellites and systems. As the next stage, the NASA’s 2015 Nanotechnology Roadmap initiative called for new design paradigms that integrate nanotechnology and conceptually new materials to build advanced, deep-space-capable, adaptive spacecraft. This review examines the cutting edge and discusses the opportunities for integration of nanomaterials into the most advanced types of electric propulsion devices that take advantage of their unique features and boost their efficiency and service life. Finally, we propose a concept of an adaptive thruster.Miniaturized spacecraft built from advanced nanomaterials are poised for unmanned space exploration. In this review, the authors examine the integration of nanotechnology in electric propulsion systems and propose the concept of self-healing and adaptive thrusters.


Applied physics reviews | 2017

Plasma under control: Advanced solutions and perspectives for plasma flux management in material treatment and nanosynthesis

Oleg Baranov; Kateryna Bazaka; Holger Kersten; Michael Keidar; Uros Cvelbar; S. Xu; I. Levchenko

Given the vast number of strategies used to control the behavior of laboratory and industrially relevant plasmas for material processing and other state-of-the-art applications, a potential user may find themselves overwhelmed with the diversity of physical configurations used to generate and control plasmas. Apparently, a need for clearly defined, physics-based classification of the presently available spectrum of plasma technologies is pressing, and the critically summary of the individual advantages, unique benefits, and challenges against key application criteria is a vital prerequisite for the further progress. To facilitate selection of the technological solutions that provide the best match to the needs of the end user, this work systematically explores plasma setups, focusing on the most significant family of the processes—control of plasma fluxes—which determine the distribution and delivery of mass and energy to the surfaces of materials being processed and synthesized. A novel classification ba...


Nanoscale | 2016

Ultra-small photoluminescent silicon-carbide nanocrystals by atmospheric-pressure plasmas

Sadegh Askari; Atta Ul Haq; Manuel Macias-Montero; I. Levchenko; Fengjiao Yu; Wuzong Zhou; K. Ostrikov; Paul Maguire; Vladimir Švrček; Davide Mariotti

Highly size-controllable synthesis of free-standing perfectly crystalline silicon carbide nanocrystals has been achieved for the first time through a plasma-based bottom-up process. This low-cost, scalable, ligand-free atmospheric pressure technique allows fabrication of ultra-small (down to 1.5 nm) nanocrystals with very low level of surface contamination, leading to fundamental insights into optical properties of the nanocrystals. This is also confirmed by their exceptional photoluminescence emission yield enhanced by more than 5 times by reducing the nanocrystals sizes in the range of 1-5 nm, which is attributed to quantum confinement in ultra-small nanocrystals. This method is potentially scalable and readily extendable to a wide range of other classes of materials. Moreover, this ligand-free process can produce colloidal nanocrystals by direct deposition into liquid, onto biological materials or onto the substrate of choice to form nanocrystal films. Our simple but efficient approach based on non-equilibrium plasma environment is a response to the need of most efficient bottom-up processes in nanosynthesis and nanotechnology.


Journal of Materials Chemistry C | 2016

Plasma-chemical synthesis, structure and photoluminescence properties of hybrid graphene nanoflake–BNCO nanowall systems

B.B. Wang; K. Zheng; D. Gao; I. Levchenko; K. Ostrikov; Michael Keidar; S. S. Zou

We describe a simple, efficient plasma-chemical technique for the synthesis of hybrid structures formed by vertically oriented BNCO nanowalls and vertically oriented graphene nanoflakes (BNCONW/GNFs), as well as their structure and photoluminescence properties. The BNCONW/GNF hybrid structures were fabricated by the synthesis of vertically oriented BNCO nanowalls in N2–H2 plasma using the plasma-enhanced hot filament chemical vapour deposition technique, followed by the direct synthesis of vertically oriented graphene nanoflakes on the BNCO nanowalls in a methane environment using a hot filament chemical vapour deposition method, where the B4C compound was used as the boron and carbon source. The results of field emission scanning electron microscopy, transmission electron microscopy, micro-Raman spectroscopy and X-ray photoelectron spectrometry measurements indicated that the BNCONW/GNF hybrid structures were composed of vertically oriented BNCO nanowalls and vertically oriented graphene nanoflakes. The photoluminescence studies of the vertically oriented BNCONW/GNF hybrid structures using a Ramalog system equipped with a 325 nm He–Cd laser demonstrated the possibility to efficiently tune the photoluminescence properties of the BNCONW/GNF structures by growing the graphene nanoflakes on the vertically oriented BNCONWs. Our findings can contribute to the designing of complex hybrid graphene–semiconductor structures suitable for applications in advanced next-generation optoelectronic nanodevices.


Scientific Reports | 2017

In vitro Demonstration of Cancer Inhibiting Properties from Stratified Self-Organized Plasma-Liquid Interface

Zhitong Chen; Shiqiang Zhang; I. Levchenko; Isak I. Beilis; Michael Keidar

Experiments on plasma-liquid interaction and formation of thinly stratified self-organized patterns at plasma-liquid interface have revealed a nontrivial cancer-inhibiting capability of liquid media treated at self-organized interfacial patterns. A pronounced cancer suppressing activity towards at least two cancer cells, breast cancer MDA-MB-231 and human glioblastoma U87 cancer lines, was demonstrated in vitro. After a short treatment at the thinly stratified self-organized plasma-liquid interface pattern, the cancer inhibiting media demonstrate pronounced suppressing and apoptotic activities towards tumor cells. Importantly, this would have been impossible without interfacial stratification of plasma jet to thin (of several µm) current filaments, which plays a pivotal role in building up the cancer inhibition properties. Furthermore, thinly stratified, self-organized interfacial discharge is capable to efficiently control the ROS and RNS concentrations in the cancer-inhibiting media. In particular, abnormal ROS/RNS ratios are not achievable in discharges since they do not form stratified thin-filament patterns. Our findings could be tremendously important for understanding the cancer proliferation problem and hence, the potential of this approach in tackling the challenges of high cancer-induced mortality should be explored.


Applied physics reviews | 2018

Lightning under water: Diverse reactive environments and evidence of synergistic effects for material treatment and activation

I. Levchenko; Kateryna Bazaka; Oleg Baranov; R. Mohan Sankaran; Alexandre Nomine; Thierry Belmonte; Shuyan Xu

This focused review aims to reveal and illustrate some unique features of processes triggered by high-density energy applied to liquids and gas-liquid interfaces and to highlight a wide spectrum of their technological applications capable of producing various advantageous effects, ranging from nanosynthesis to biological and medical applications. Plasma, electric discharges, laser, and ultrasound power effects were selected as representative examples of high-density energy and liquid interactions, yet the available possibilities are not limited by these quite different types of power and thus the reader could extrapolate the outlined features and effects to other kinds of powerful impacts. The basic physical mechanisms are briefly reviewed with the aim to familiarize the readers with the potential capabilities of high-density energy processes in liquids. These will be of direct interest to researchers tasked with the development, optimization, and characterization of processes and highly reactive environments for highly controlled transformation of matter in abiotic and biological systems. It could also be highly useful for under- and post-graduate students specializing in the related fields and general physical audience involved in various plasma, materials, energy conversion, and other concurrent research activities.


Advanced Materials | 2018

Advanced Materials for Next‐Generation Spacecraft

I. Levchenko; Kateryna Bazaka; Thierry Belmonte; Michael Keidar; Shuyan Xu

Spacecraft are expected to traverse enormous distances over long periods of time without an opportunity for maintenance, re-fueling, or repair, and, for interplanetary probes, no on-board crew to actively control the spacecraft configuration or flight path. Nevertheless, space technology has reached the stage when mining of space resources, space travel, and even colonization of other celestial bodies such as Mars and the Moon are being seriously considered. These ambitious aims call for spacecraft capable of self-controlled, self-adapting, and self-healing behavior. It is a tough challenge to address using traditional materials and approaches for their assembly. True interplanetary advances may only be attained using novel self-assembled and self-healing materials, which would allow for realization of next-generation spacecraft, where the concepts of adaptation and healing are at the core of every level of spacecraft design. Herein, recent achievements are captured and future directions in materials-driven development of space technology outlined.


RSC Advances | 2017

Plasma-deposited hydrogenated amorphous silicon films: multiscale modelling reveals key processes

Z. Marvi; S. Xu; G. Foroutan; K. Ostrikov; I. Levchenko

The underlying physical and chemical mechanisms and role of the plasma species in the synthesis of hydrogenated amorphous silicon (a-Si:H) thin films were studied numerically with the aim to reveal the key growth processes and, hence, to ensure a much higher level of control over the film structure and properties. A sophisticated multiscale model developed on the basis of self-consistent surface and plasma kinetics sub-models, including one-dimensional plasma sheath formalization, was used to study the nucleation, growth, and structure formation of amorphous hydrogenated silicon films in a reactive low temperature plasma environment containing a mixture of silane, hydrogen, and argon gases. The model considers a whole range of key processes, and the effect of surface temperature, ion flux, energy and other plasma-sheath parameters are examined in detail. The leading role of hydrogen in structure formation is confirmed and moreover, key processes critically important for designing and discovering novel materials with important properties are identified. The dominant role of SiH3 as the main precursor in the deposition of amorphous hydrogenated silicon films is proved, and routes for the efficient, technique-enabled control are specified. The presented results were compared with the experimental data, and a good agreement with the experimental findings obtained for the deposition of amorphous hydrogenated films has been demonstrated.

Collaboration


Dive into the I. Levchenko's collaboration.

Top Co-Authors

Avatar

K. Ostrikov

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael Keidar

George Washington University

View shared research outputs
Top Co-Authors

Avatar

S. Xu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

Kateryna Bazaka

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

B.B. Wang

Chongqing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Shuyan Xu

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar

K. Zheng

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mankang Zhu

Beijing University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

X.L. Qu

Beijing University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge