I. Simarro
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I. Simarro.
Veterinary Microbiology | 2011
Francisco Javier Martínez-Lobo; Francisco Díez-Fuertes; Joaquim Segalés; Carlos García-Artiga; I. Simarro; José María Bermúdez de Castro; C. Prieto
Porcine reproductive and respiratory syndrome virus (PRRSV) isolates are classified in two different genotypes, based on genomic heterogeneity: type 1, which comprises European type isolates, and type 2, which includes North American type isolates. It is believed that members of both genotypes differ in some biological properties including pathogenicity, however extensive studies comparing isolates of both genotypes have never been carried out. The objective of the present study was to compare the pathogenic properties of six different PRRSV isolates, three of type 1 and three of type 2, in a young pig infection model. For this purpose, a total of 105 3-week-old piglets were divided in 7 groups of 15 animals that were exposed on day 0 of the experiment to one of the six isolates tested or were mock infected (negative control group). Clinical signs and rectal temperatures were recorded daily and blood samples were taken on days 3, 6, 9, 12, 15, 18 and 21 of the experiment. On days 7, 14 and 21 post-inoculation five animals per group were sacrificed, macroscopic lung lesions were evaluated and different tissue samples were collected to determine viral organic distribution. The results obtained indicate that type 2 isolates are more pneumovirulent than type 1 isolates, as demonstrated by the recording of respiratory clinical signs only in pigs exposed to type 2 viruses and by the severity of macroscopic and microscopic lung lesions in those pigs. However, no clear differences could be established between genotypes in systemic clinical signs or viral load and viral distribution after challenge. These results support the general idea that type 2 isolates induce more severe respiratory disease than type 1 isolates.
Theriogenology | 1997
C. Prieto; P. Suárez; I. Simarro; Carlos García; S. Martín-Rillo; J. M. Castro
Twenty-one gilts without measurable PRRSV serum antibody titres were identified for this experiment. Seven gilts were used as controls (Group C) and 14 as principals. Of these, 7 gilts were preimmunized to PRRSV and constituted Group B, while 7 gilts remained seronegative and constituted Group A. The principal gilts were inseminated with boar semen containing PRRSV and were killed 20 d later. The control gilts were treated similarly but were not exposed to PRRSV. Gilts were observed for clinical signs of infection. The effects on the conception rates were studied and gilts and embryos were tested for PRRSV and homologous antibodies. Group A and B gilts developed signs of PRRS associated with anorexia and slightly elevated body temperatures. Transmission of the infection was demonstrated by the isolation of PRRSV from serum and other tissue samples of principal gilts and also by seroconversion. The results show that early infection may have an insignificant effect or no effect on the conception and fertilization rates. However, exposure to PRRSV at the time of insemination can result in transplacental infection of embryos. In Group A gilts, 5 of 6 litters were infected prenatally with 7.6% of embryos infected. In Group B gilts, 1 of 5 litters and 1.3% of embryos were infected. Moreover, approximately 2 and 4 times more embryos were dead in litters of gilts from Group A and Group B than in gilts from control Group C. The isolation of PRRSV in 3 dead embryos suggests that the embryos may have died as a result of the direct effect of the virus. It can be concluded that the insemination of either seronegative or preimmunized gilts with boar semen containing PRRS V may have an insignificant effect or no effect on conception and fertilization rates, although it can result in transmission of the virus and embryonic infection and death.
Vaccine | 2011
F. Javier Martínez-Lobo; Francisco Díez-Fuertes; I. Simarro; José María Bermúdez de Castro; C. Prieto
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) is highly heterogenic. This heterogeneity has an effect on antigenic composition of PRRSV and might create differences in sensitivity to neutralization between isolates. The sensitivity to neutralization could be an important feature of PRRSV isolates because it is likely that isolates resistant to neutralization pose a significant challenge for the development of vaccines that elicit broad protective immunity. Nonetheless, little information is available for understanding or categorizing the viral neutralization phenotype of PRRSV isolates. Consequently, the main purpose of this study was to determine whether PRRSV isolates differ in their susceptibility to neutralization and if they can be classified in different categories based on their neutralization phenotype. For this purpose, a panel of 39 PRRSV isolates and a set of 30 hyperimmune monospecific sera were used in cross-neutralization assays. The results of this study indicate that PRRSV isolates differ in their sensitivity to neutralization and k-means clustering system allowed classifying the isolates in four different categories according to their neutralization phenotype: highly sensitive, sensitive, moderately sensitive and resistant to neutralization. Further analyses using two additional clustering systems that considered individual data for the classification of the isolates confirmed that classification obtained by k-means is accurate in most cases and that only in a few instances classification is less stringent. Sequences of GP3, GP4 and GP5 were analyzed but no correlation could be found between the sequence of previously identified neutralizing epitopes or the number of N-linked glycosylation sites in different proteins and the neutralization phenotype of the isolates. These data provide the first systematic assessment of overall neutralization sensitivities of a panel of diverse PRRSV isolates. The classification of the isolates provides a useful tool to facilitate the systematic characterization of neutralizing antibody production elicited by new vaccine candidates.
Theriogenology | 1996
C. Prieto; P. Suárez; José M. Bautista; R. Sánchez; S.M. Rillo; I. Simarro; A. Solana; J. M. Castro
Eleven boars seronegative to porcine reproductive and respiratory syndrome virus (PRRSV) were trained for semen collection: five boars were inoculated intranasally with 6 x 10(6)TCID(50)/ml of PRRSV (Group A); four boars were inoculated intranasally with 6 x 10(4)TCID(50)/ml (Group B); and two boars were used as uninfected control (Group C). Semen samples were collected at 7-d intervals from 49 d prior to experimental inoculation with PRRSV to 70 d after inoculation, and were examined for sperm volume, sperm concentration, sperm morphology, sperm motility and for the presence of PRRSV. The infection in boars was demonstrated by the reisolation of PRRSV from the serum of all inoculated boars. Rectal temperatures and general health of the boars were clinically normal throughout the trial. Differences were observed in the quality of semen collected from boars after experimental infection with PRRSV. This infection induced a significant decrease in sperm motility and in spermatozoa with normal acrosomes. Of the semen samples tested for virus isolation in swine alveolar macrophages PRRSV was only isolated in 1 boar from Group B. The virus was detected in an additional semen sample in Group A by the production of an antibody titer in a biological assay. All attempts to detect PRRSV by RT-PCR in semen samples were unsuccessful. Nevertheless, from our study it is possible to suggest that the PRRSV can occasionally be transmitted in the semen during the initial phase of the disease.
Veterinary Microbiology | 1997
C. Prieto; P. Suárez; I. Simarro; Carlos García; A. Fernández; J. M. Castro
Twenty-five gilts without measurable porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) serum antibody titres were used for this experiment. All of them were randomly assigned to one of the treatment groups at the time of artificial insemination. Twelve gilts were exposed to PRRSV, of these, six were slaughtered on day 10 after exposure and constituted group A. The remaining six were slaughtered on day 20 after infection and constituted group C. Thirteen gilts were used as controls, six of these were slaughtered on day 10 after treatment and constituted group B. The remaining seven were slaughtered on day 20 after treatment and constituted group D. The infected gilts were inoculated with PRRSV intranasally and intravenously in the ear vein. They were observed for clinical signs of infection and the effects on conception and fertilization rates were studied, while the gilts and their embryos were tested for PRRSV and homologous antibodies. The infected animals developed signs of PRRS associated with anorexia and slight pyrexia. Infection was verified by reisolation of the virus from serum and other tissue samples and also by seroconversion. Ten out of 12 infected gilts and 10 out of 13 controls were pregnant at the time of slaughter and the ratio of embryos to corpora lutea was the same in both, infected and control groups (0.75). Therefore, infection with PRRSV at the onset of gestation did not appear to interfere with conception and fertilization rates and subsequent pregnancy. The PRRSV was not isolated from any of the embryos collected at day 10 postexposure, but was present in 20-day-old embryos of group C gilts. In this group, 60% of litters were infected prenatally, with 16% of embryos infected. The proportion of dead embryos was three times greater than in a control group D (35.4% and 9.8%, respectively). The results of this report indicate that exposure of susceptible gilts to PRRSV at the onset of gestation has no significant effect on conception and fertilization rates. However, although infection does not appear to have any effect on the embryos before implantation, it can result in transplacental infection and embryo death.
Veterinary Record | 1996
C. Prieto; R. Sánchez; S. Martin-Rillo; P. Suárez; I. Simarro; A. Solana; J. M. Castro
Twenty-five gilts without measurable serum antibody titres to porcine reproductive and respiratory syndrome virus (PRRsv) were identified and 16 were inoculated with PRRSV at seven, 14 or 21 days of gestation and killed 20 to 22 days later to determine the effect of the virus on their embryos. The remaining nine gilts were not exposed to PRRSV, but were killed at the same stages of gestation. The gults were observed for clinical signs of infection and the gilts and their embryos were tested for PRRv and homologous antibodies. The infection was demonstrated by the re-isolation of the virus and its detection by the reverse transcriptase polymerase chain reaction in serum and other tissue samples from the inoculated gilts, and also by seroconversion. However, the gilts remained healthy throughout the study, except for one which was depressed and anorexic for two days. Two of the litters from the gilts challenged with PRRSV on day 14 of gestation contained one and three infected live embryos; the other embryos from these two litters did not contain detectable virus, although most of the embryos in one of the litters were dead. The other nine litters from the gilts challenged with PRRSV and the control litters, showed no evidence of infection.
Veterinary Journal | 2009
C. Prieto; Ana M. Vázquez; José I. Núñez; E. Álvarez; I. Simarro; José María Bermúdez de Castro
The aim of the present study was to establish the degree of diversity of porcine reproductive and respiratory virus (PRRSV) isolates that circulate in the same geographical area in different years. Nucleotide sequences of open reading frame (ORF) 5 were determined for 28 Spanish field PRRSV isolates from different years and three European-type modified live virus vaccines. Sequences were aligned using Clustal W software and a phylogenetic tree constructed using the neighbour joining method. The results of pairwise homology comparisons of nucleotide and deduced amino acid sequences of these PRRSV isolates indicate a tendency for heterogeneity to increase with time. The study of the phylogenetic tree revealed that Spanish PRRSV isolates constitute two well-defined clades and a group of unrelated sequences. The observed heterogeneity does not appear to be due to temporal evolution exclusively. Early and recent isolates group themselves into different clusters independently of the time of isolation, indicating the co-circulation of different variants and the maintenance of variants of the original isolates in the field.
Journal of Clinical Microbiology | 2006
Ana I. Vela; Enevold Falsen; I. Simarro; Eduardo Rollán; Matthew D. Collins; Lucas Domínguez; José F. Fernández-Garayzábal
ABSTRACT We report a case of bacteremia in puppies caused by Streptococcus dysgalactiae subsp. dysgalactiae. Identification was achieved by phenotypic and molecular genetic methods. This is the first report of the recovery of S. dysgalactiae subsp. dysgalactiae from dogs.
Theriogenology | 1996
C. Prieto; P. Suárez; S. Martín-Rillo; I. Simarro; A. Solana; J. M. Castro
Fertilized pig ova, collected from 14 estrus-synchronized gilts 32 h after presumed ovulation were microinjected or cultured for 72 h in Beltsville Embryo Culture Medium-3 with or without Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). To detect virus in the samples, virus isolation of swine alveolar macrophage, Reverse Transcriptase Polymerase Chain Reaction and Fluorescent Antibody techniques were employed. Microinjection or incubation of embryos with PRRSV did not significantly inhibit development of the porcine embryos in vitro when compared with that of controls (P = 0.75 and P = 0.14, respectively). Although either 10 to 20 TCID50 were microinjected or large concentrations of virus were used for embryo exposure by incubation, PRRSV was not detected in association with the embryos. It is concluded based on the experiments reported here that 4- to 16-cell stage pig embryos are not susceptible to productive infection with PRRSV in vitro.
Theriogenology | 2003
C. Prieto; Carlos García; I. Simarro; José María Bermúdez de Castro
Porcine reproductive and respiratory syndrome virus (PRRSV) has been reported to be shed in the semen of infected boars. To determine whether the reproductive tissues could be a persistent source of virus and the possible origin of PRRSV found in semen of infected boars, 20 PRRSV-seronegative boars were intranasally inoculated with 5 x 10(6) median tissue culture infective doses (TCID50) of PRRSV and necropsied at different times post-inoculation (p.i.) from Day 2 to Day 37 p.i. Blood samples were collected before experimental inoculation, at necropsy and at different times p.i. At necropsy, epididymal semen and reproductive tissues were collected and the presence of the virus determined by virus isolation. The infection of the boars was demonstrated by the isolation of the virus from the sera of all inoculated boars and by seroconversion. PRRSV was detected in serum samples from Day 2 to Day 23 p.i., although the viremic period was largely dependent on the individual response to infection. Viral replication was proven within different reproductive tissues from Day 2 to Day 23 p.i., being most consistently found in the epididymus. In addition, PRRSV was isolated in semen from Day 4 to Day 10 p.i. The correlation of a diminished viremia and the inability to isolate PRRSV from semen or reproductive tissues may be due to one of two possibilities. First, viremia is responsible for most of the virus isolated from reproductive tissues due to the movement of PRRSV-infected cells out of the blood and into the tissues. Second, viremia may initially seed the reproductive tissues with PRRSV, and then the virus is produced into the reproductive tract and shed into semen at low levels.