I. Truglia
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by I. Truglia.
Neural Plasticity | 2016
M. Gorgoni; G. Lauri; I. Truglia; Susanna Cordone; Simone Sarasso; Serena Scarpelli; Anastasia Mangiaruga; A. D’Atri; Daniela Tempesta; Michele Ferrara; Camillo Marra; Paolo Maria Rossini; Luigi De Gennaro
Several studies have identified two types of sleep spindles: fast (13–15 Hz) centroparietal and slow (11–13 Hz) frontal spindles. Alterations in spindle activity have been observed in Alzheimers disease (AD) and Mild Cognitive Impairment (MCI). Only few studies have separately assessed fast and slow spindles in these patients showing a reduction of fast spindle count, but the possible local specificity of this phenomenon and its relation to cognitive decline severity are not clear. Moreover, fast and slow spindle density have never been assessed in AD/MCI. We have assessed fast and slow spindles in 15 AD patients, 15 amnesic MCI patients, and 15 healthy elderly controls (HC). Participants underwent baseline polysomnographic recording (19 cortical derivations). Spindles during nonrapid eye movements sleep were automatically detected, and spindle densities of the three groups were compared in the derivations where fast and slow spindles exhibited their maximum expression (parietal and frontal, resp.). AD and MCI patients showed a significant parietal fast spindle density decrease, positively correlated with Minimental State Examination scores. Our results suggest that AD-related changes in spindle density are specific for frequency and location, are related to cognitive decline severity, and may have an early onset in the pathology development.
Scientific Reports | 2017
Luigi De Gennaro; M. Gorgoni; Flaminia Reda; G. Lauri; I. Truglia; Susanna Cordone; Serena Scarpelli; Anastasia Mangiaruga; Aurora D'Atri; Giordano Lacidogna; Michele Ferrara; Camillo Marra; Paolo Maria Rossini
Although a slowing of electroencephalographic (EEG) activity during wakefulness and –to some extent- sleep of Alzheimer disease (AD) patients (i.e., increased slow-frequency activity) was documented, recent findings in healthy elderly show a decreased 0.6–1 Hz slow wave activity (SWA) during NREM, which was associated to β-amyloid deposition and impaired hippocampal memory consolidation. We hypothesize that the apparent contradiction may be explained by the partial overlap between 0.6–1 Hz EEG activity and K-Complex (KC). According to this view, we studied both frontal KCs and SWA in 20 AD patients and 20 healthy age-matched controls (HC) during nightly sleep, under the hypothesis that KCs better discriminate patients from healthy elderly than ≤1 Hz SWA. A drastic decrease of KC density during stage 2 NREM was found in AD compared to HC. Patients show more than 40% reduction of the KC density, allowing a correct classification of 80%. On the other hand, ≤1 Hz SWA of AD patients is slightly (not significantly) higher in most cortical areas compared to HC. Although no significant changes of ≤1 Hz SWA are detectable over frontal areas in AD, KC density decreases over the same location, and its decrease is related to the cognitive decline.
Sleep Medicine | 2015
M. Gorgoni; Michele Ferrara; Aurora D'Atri; G. Lauri; Serena Scarpelli; I. Truglia; Luigi De Gennaro
OBJECTIVE Behavioral and physiological indexes of high sleep inertia (SI) characterize the awakening from recovery (REC) sleep after prolonged wakefulness, but the associated electroencephalogram (EEG) topography has never been investigated. Here, we compare the EEG topography following the awakening from baseline (BSL) and REC sleep. METHODS We have recorded the EEG waking activity of 26 healthy subjects immediately after the awakening from BSL sleep and from REC sleep following 40 h of prolonged wakefulness. In both BSL and REC conditions, 12 subjects were awakened from stage 2 sleep, and 14 subjects from rapid eye movement (REM) sleep. The full-scalp waking EEG (eyes closed) was recorded after all awakenings. RESULTS Subjects awakened from REC sleep showed a reduction of fronto-central alpha and beta-1 activities, while no significant effects of the sleep stage of awakening have been observed. Positive correlations between pre- and post-awakening EEG modifications following REC sleep have been found in the posterior and lateral cortices in the frequency ranges from theta to beta-2 and (only for REM awakenings) extending to the fronto-central regions in the beta-1 band, and in the midline central and parietal derivations for the alpha and delta bands, respectively. CONCLUSIONS These findings suggest that the higher SI after REC sleep may be due to the fronto-central decrease of alpha and beta-1 activity and to the persistence of the sleep EEG features after awakening in the posterior, lateral, and fronto-central cortices, without influences of the sleep stage of awakening.
Brain Sciences | 2017
Flaminia Reda; M. Gorgoni; G. Lauri; I. Truglia; Susanna Cordone; Serena Scarpelli; Anastasia Mangiaruga; Aurora D'Atri; Michele Ferrara; Giordano Lacidogna; Camillo Marra; Paolo Maria Rossini; Luigi De Gennaro
The K-complex (KC) is one of the hallmarks of Non-Rapid Eye Movement (NREM) sleep. Recent observations point to a drastic decrease of spontaneous KCs in Alzheimer’s disease (AD). However, no study has investigated when, in the development of AD, this phenomenon starts. The assessment of KC density in mild cognitive impairment (MCI), a clinical condition considered a possible transitional stage between normal cognitive function and probable AD, is still lacking. The aim of the present study was to compare KC density in AD/MCI patients and healthy controls (HCs), also assessing the relationship between KC density and cognitive decline. Twenty amnesic MCI patients underwent a polysomnographic recording of a nocturnal sleep. Their data were compared to those of previously recorded 20 HCs and 20 AD patients. KCs during stage 2 NREM sleep were visually identified and KC densities of the three groups were compared. AD patients showed a significant KC density decrease compared with MCI patients and HCs, while no differences were observed between MCI patients and HCs. KC density was positively correlated with Mini-Mental State Examination (MMSE) scores. Our results point to the existence of an alteration of KC density only in a full-blown phase of AD, which was not observable in the early stage of the pathology (MCI), but linked with cognitive deterioration.
Sleep Medicine | 2017
Serena Scarpelli; Aurora D'Atri; M. Gorgoni; Anastasia Mangiaruga; G. Lauri; I. Truglia; C. Bartolacci; Michele Ferrara; L. De Gennaro
Sleep Medicine | 2017
M. Gorgoni; Flaminia Reda; G. Lauri; I. Truglia; Susanna Cordone; Serena Scarpelli; Anastasia Mangiaruga; Aurora D'Atri; C. Bartolacci; Valentina Alfonsi; C. Schiappa; Michele Ferrara; Paolo Maria Rossini; L. De Gennaro
Archive | 2016
Anastasia Mangiaruga; Flaminia Reda; Aurora D'Atri; Serena Scarpelli; Luigi De Gennaro; Susanna Cordone; G. Lauri; M. Ferrara; I. Truglia; Camillo Marra; Paolo Maria Rossini; M. Gorgoni
Archive | 2016
Anastasia Mangiaruga; Aurora D'Atri; Serena Scarpelli; Luigi De Gennaro; Susanna Cordone; Camillo Marra; Paolo Maria Rossini; G. Lauri; M. Ferrara; I. Truglia; Daniela Tempesta; Simone Sarasso; M. Gorgoni
Archive | 2016
Anastasia Mangiaruga; Serena Scarpelli; Aurora D'Atri; Luigi De Gennaro; G. Lauri; M. Ferrara; I. Truglia; C. Bartolacci; M. Gorgoni
Archive | 2016
Susanna Cordone; Luigi De Gennaro; Anastasia Mangiaruga; Serena Scarpelli; Aurora D'Atri; G. Lauri; M. Ferrara; I. Truglia; Giordano Lacidogna; Camillo Marra; Paolo Maria Rossini; M. Gorgoni