John Wahr
University of Colorado Boulder
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by John Wahr.
Journal of Geophysical Research | 1998
John Wahr; Mery Molenaar; Frank O. Bryan
The GRACE satellite mission, scheduled for launch in 2001, is designed to map out the Earths gravity field to high accuracy every 2–4 weeks over a nominal lifetime of 5 years. Changes in the gravity field are caused by the redistribution of mass within the Earth and on or above its surface. GRACE will thus be able to constrain processes that involve mass redistribution. In this paper we use output from hydrological, oceanographic, and atmospheric models to estimate the variability in the gravity field (i.e., in the geoid) due to those sources. We develop a method for constructing surface mass estimates from the GRACE gravity coefficients. We show the results of simulations, where we use synthetic GRACE gravity data, constructed by combining estimated geophysical signals and simulated GRACE measurement errors, to attempt to recover hydrological and oceanographic signals. We show that GRACE may be able to recover changes in continental water storage and in seafloor pressure, at scales of a few hundred kilometers and larger and at timescales of a few weeks and longer, with accuracies approaching 2 mm in water thickness over land, and 0.1 mbar or better in seafloor pressure.
Science | 2012
Andrew Shepherd; Erik R. Ivins; Geruo A; Valentina Roberta Barletta; Michael J. Bentley; Srinivas Bettadpur; Kate Briggs; David H. Bromwich; René Forsberg; Natalia Galin; Martin Horwath; Stan Jacobs; Ian Joughin; Matt A. King; Jan T. M. Lenaerts; Jilu Li; Stefan R. M. Ligtenberg; Adrian Luckman; Scott B. Luthcke; Malcolm McMillan; Rakia Meister; Glenn A. Milne; J. Mouginot; Alan Muir; Julien P. Nicolas; John Paden; Antony J. Payne; Hamish D. Pritchard; Eric Rignot; Helmut Rott
Warming and Melting Mass loss from the ice sheets of Greenland and Antarctica account for a large fraction of global sea-level rise. Part of this loss is because of the effects of warmer air temperatures, and another because of the rising ocean temperatures to which they are being exposed. Joughin et al. (p. 1172) review how ocean-ice interactions are impacting ice sheets and discuss the possible ways that exposure of floating ice shelves and grounded ice margins are subject to the influences of warming ocean currents. Estimates of the mass balance of the ice sheets of Greenland and Antarctica have differed greatly—in some cases, not even agreeing about whether there is a net loss or a net gain—making it more difficult to project accurately future sea-level change. Shepherd et al. (p. 1183) combined data sets produced by satellite altimetry, interferometry, and gravimetry to construct a more robust ice-sheet mass balance for the period between 1992 and 2011. All major regions of the two ice sheets appear to be losing mass, except for East Antarctica. All told, mass loss from the polar ice sheets is contributing about 0.6 millimeters per year (roughly 20% of the total) to the current rate of global sea-level rise. The mass balance of the polar ice sheets is estimated by combining the results of existing independent techniques. We combined an ensemble of satellite altimetry, interferometry, and gravimetry data sets using common geographical regions, time intervals, and models of surface mass balance and glacial isostatic adjustment to estimate the mass balance of Earth’s polar ice sheets. We find that there is good agreement between different satellite methods—especially in Greenland and West Antarctica—and that combining satellite data sets leads to greater certainty. Between 1992 and 2011, the ice sheets of Greenland, East Antarctica, West Antarctica, and the Antarctic Peninsula changed in mass by –142 ± 49, +14 ± 43, –65 ± 26, and –20 ± 14 gigatonnes year−1, respectively. Since 1992, the polar ice sheets have contributed, on average, 0.59 ± 0.20 millimeter year−1 to the rate of global sea-level rise.
Science | 2013
Alex S. Gardner; Geir Moholdt; J. Graham Cogley; Bert Wouters; Anthony A. Arendt; John Wahr; Etienne Berthier; Regine Hock; W. Tad Pfeffer; Georg Kaser; Stefan R. M. Ligtenberg; Tobias Bolch; Martin Sharp; Jon Ove Hagen; Michiel R. van den Broeke; Frank Paul
Melting Away We assume the Greenland and Antarctica ice sheets are the main drivers of global sea-level rise, but how large is the contribution from other sources of glacial ice? Gardner et al. (p. 852) synthesize data from glacialogical inventories to find that glaciers in the Arctic, Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia contribute approximately as much melt water as the ice sheets themselves: 260 billion tons per year between 2003 and 2009, accounting for about 30% of the observed sea-level rise during that period. The contribution of glaciers to sea level rise is nearly as much as that of the Greenland and Antarctic Ice Sheets combined. Glaciers distinct from the Greenland and Antarctic Ice Sheets are losing large amounts of water to the world’s oceans. However, estimates of their contribution to sea level rise disagree. We provide a consensus estimate by standardizing existing, and creating new, mass-budget estimates from satellite gravimetry and altimetry and from local glaciological records. In many regions, local measurements are more negative than satellite-based estimates. All regions lost mass during 2003–2009, with the largest losses from Arctic Canada, Alaska, coastal Greenland, the southern Andes, and high-mountain Asia, but there was little loss from glaciers in Antarctica. Over this period, the global mass budget was –259 ± 28 gigatons per year, equivalent to the combined loss from both ice sheets and accounting for 29 ± 13% of the observed sea level rise.
Nature | 2012
Thomas Jacob; John Wahr; W. Tad Pfeffer; Sean Claude Swenson
Glaciers and ice caps (GICs) are important contributors to present-day global mean sea level rise. Most previous global mass balance estimates for GICs rely on extrapolation of sparse mass balance measurements representing only a small fraction of the GIC area, leaving their overall contribution to sea level rise unclear. Here we show that GICs, excluding the Greenland and Antarctic peripheral GICs, lost mass at a rate of 148 ± 30 Gt yr−1 from January 2003 to December 2010, contributing 0.41 ± 0.08 mm yr−1 to sea level rise. Our results are based on a global, simultaneous inversion of monthly GRACE-derived satellite gravity fields, from which we calculate the mass change over all ice-covered regions greater in area than 100 km2. The GIC rate for 2003–2010 is about 30 per cent smaller than the previous mass balance estimate that most closely matches our study period. The high mountains of Asia, in particular, show a mass loss of only 4 ± 20 Gt yr−1 for 2003–2010, compared with 47–55 Gt yr−1 in previously published estimates. For completeness, we also estimate that the Greenland and Antarctic ice sheets, including their peripheral GICs, contributed 1.06 ± 0.19 mm yr−1 to sea level rise over the same time period. The total contribution to sea level rise from all ice-covered regions is thus 1.48 ± 0.26 mm −1, which agrees well with independent estimates of sea level rise originating from land ice loss and other terrestrial sources.
Geophysical Research Letters | 2004
John Wahr; Sean Claude Swenson; Victor Zlotnicki; I. Velicogna
Eleven monthly GRACE gravity field solutions are now available for analyses. We show those fields can be used to recover monthly changes in water storage, both on land and in the ocean, to accuracies of 1.5 cm of water thickness when smoothed over 1000 km. The amplitude of the annually varying signal can be determined to 1.0 cm. Results are 30% better for a 1500 km smoothing radius, and 40% worse for a 750 km radius. We estimate the annually varying component of water storage for three large drainage basins (the Mississippi, the Amazon, and a region draining into the Bay of Bengal), to accuracies of 1.0–1.5 cm.
Science | 2006
I. Velicogna; John Wahr
Using measurements of time-variable gravity from the Gravity Recovery and Climate Experiment satellites, we determined mass variations of the Antarctic ice sheet during 2002–2005. We found that the mass of the ice sheet decreased significantly, at a rate of 152 ± 80 cubic kilometers of ice per year, which is equivalent to 0.4 ± 0.2 millimeters of global sea-level rise per year. Most of this mass loss came from the West Antarctic Ice Sheet.
Journal of Geophysical Research | 2008
Sean Claude Swenson; Don P. Chambers; John Wahr
[1] In this study, we estimate a time series of geocenter anomalies from a combination of data from the GravityRecoveryandClimateExperiment(GRACE)satellitemissionandthe outputfromoceanmodels.Amatrixequationisderivedrelating totalgeocentervariations to the GRACE coefficients of degrees two and higher and to the oceanic component of the degree one coefficients. We estimate the oceanic component from two state-of-the-art ocean models. Results are compared to independent estimates of geocenter derived from other satellite data, such as satellite laser ranging and GPS. Finally, we compute degree one coefficients that are consistent with the processing applied to the GRACE Level-2 gravity field coefficients. The estimated degree one coefficients can be used to improve estimates of mass variability from GRACE, which alone cannot provide them directly.
Geophysical Research Letters | 2006
John Wahr; Sean Claude Swenson; I. Velicogna
The GRACE satellite mission is mapping the Earths gravity field at monthly intervals. The solutions can be used to determine monthly changes in the distribution of water on land and in the ocean. Most GRACE studies to-date have focussed on producing maps of mass variability, with little discussion of the errors in those maps. Error estimates, though, are necessary if GRACE is to be used as a diagnostic tool for assessing and improving hydrology and ocean models. Furthermore, only with error estimates can it be decided whether some feature of the data is real, and how accurately that feature is determined by GRACE. Here, we describe a method of constructing error estimates for GRACE mass values. The errors depend on latitude and smoothing radius. Once the errors are adjusted for these factors, we find they are normally-distributed. This allows us to assign confidence levels to GRACE mass estimates.
Nature | 2006
I. Velicogna; John Wahr
In 2001 the Intergovernmental Panel on Climate Change projected the contribution to sea level rise from the Greenland ice sheet to be between -0.02 and +0.09 m from 1990 to 2100 (ref. 1). However, recent work has suggested that the ice sheet responds more quickly to climate perturbations than previously thought, particularly near the coast. Here we use a satellite gravity survey by the Gravity Recovery and Climate Experiment (GRACE) conducted from April 2002 to April 2006 to provide an independent estimate of the contribution of Greenland ice mass loss to sea level change. We detect an ice mass loss of 248 ± 36 km3 yr-1, equivalent to a global sea level rise of 0.5 ± 0.1 mm yr-1. The rate of ice loss increased by 250 per cent between the periods April 2002 to April 2004 and May 2004 to April 2006, almost entirely due to accelerated rates of ice loss in southern Greenland; the rate of mass loss in north Greenland was almost constant. Continued monitoring will be needed to identify any future changes in the rate of ice loss in Greenland.
Geophysical Research Letters | 2001
T. van Dam; John Wahr; P. C. D. Milly; A. B. Shmakin; Geoffrey Blewitt; David LaVallee; Kristine M. Larson
The effects of long-wavelength (> 100 km), seasonal variability in continental water storage on vertical crustal motions are assessed. The modeled vertical displace- ments (ARM) have root-mean-square (RMS) values for 1994- 1998 as large as 8 mm, with ranges up to 30 mm, and are predominantly annual in character. Regional strains are on the order of 20 nanostrain for tilt and 5 nanostrain for hori- zontal deformation. We compare ArM with observed Global Positioning System (GPS) heights (Aro) (which include ad- justments to remove estimated effects of atmospheric pres- sure and annual tidal and non-tidal ocean loading) for 147 globally distributed sites. When the Aro time series are ad- justed by ArM, their variances are reduced, on average, by an amount equal to the variance of the ArM. Of the Aro time series exhibiting a strong annual signal, more than half