Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iain C. Macaulay is active.

Publication


Featured researches published by Iain C. Macaulay.


PLOS Genetics | 2014

Single Cell Genomics: Advances and Future Perspectives

Iain C. Macaulay; Thierry Voet

Advances in whole-genome and whole-transcriptome amplification have permitted the sequencing of the minute amounts of DNA and RNA present in a single cell, offering a window into the extent and nature of genomic and transcriptomic heterogeneity which occurs in both normal development and disease. Single-cell approaches stand poised to revolutionise our capacity to understand the scale of genomic, epigenomic, and transcriptomic diversity that occurs during the lifetime of an individual organism. Here, we review the major technological and biological breakthroughs achieved, describe the remaining challenges to overcome, and provide a glimpse into the promise of recent and future developments.


Nature | 2013

Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy

Alejandra Sanjuan-Pla; Iain C. Macaulay; Christina T. Jensen; Petter S. Woll; Tiago C. Luis; Adam Mead; Susan Hardman Moore; C Carella; S Matsuoka; T Bouriez Jones; Onima Chowdhury; L Stenson; Michael Lutteropp; Green Jca.; R Facchini; Hanane Boukarabila; Amit Grover; Adriana Gambardella; Supat Thongjuea; Joana Carrelha; P Tarrant; Debbie Atkinson; Clark S-A.; Claus Nerlov; Jacobsen Sew.

The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding—a common and life-threatening side effect of many cancer therapies—and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output.


Nature Cell Biology | 2013

Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis

Victoria Moignard; Iain C. Macaulay; Gemma Swiers; Florian Buettner; Judith Schütte; Fernando J. Calero-Nieto; Sarah Kinston; Anagha Joshi; Rebecca Hannah; Fabian J. Theis; Sten Eirik W. Jacobsen; Marella de Bruijn; Berthold Göttgens

Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease.


Nature Methods | 2015

G&T-seq: parallel sequencing of single-cell genomes and transcriptomes

Iain C. Macaulay; Wilfried Haerty; Parveen Kumar; Yang I. Li; Tim Xiaoming Hu; Mabel J Teng; Mubeen Goolam; Nathalie Saurat; Paul Coupland; Lesley Shirley; Miriam Smith; Niels Van der Aa; Ruby Banerjee; Peter Ellis; Michael A. Quail; Harold Swerdlow; Magdalena Zernicka-Goetz; Frederick J. Livesey; Chris P. Ponting; Thierry Voet

The simultaneous sequencing of a single cells genome and transcriptome offers a powerful means to dissect genetic variation and its effect on gene expression. Here we describe G&T-seq, a method for separating and sequencing genomic DNA and full-length mRNA from single cells. By applying G&T-seq to over 220 single cells from mice and humans, we discovered cellular properties that could not be inferred from DNA or RNA sequencing alone.


Nature Methods | 2016

Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity.

Christof Angermueller; Stephen J. Clark; Heather J. Lee; Iain C. Macaulay; Mabel J Teng; Tim Xiaoming Hu; Felix Krueger; Sébastien A. Smallwood; Chris P. Ponting; Thierry Voet; Gavin Kelsey; Oliver Stegle; Wolf Reik

We report scM&T-seq, a method for parallel single-cell genome-wide methylome and transcriptome sequencing that allows for the discovery of associations between transcriptional and epigenetic variation. Profiling of 61 mouse embryonic stem cells confirmed known links between DNA methylation and transcription. Notably, the method revealed previously unrecognized associations between heterogeneously methylated distal regulatory elements and transcription of key pluripotency genes.


Nature Biotechnology | 2015

Decoding the regulatory network of early blood development from single-cell gene expression measurements

Victoria Moignard; Steven Woodhouse; Laleh Haghverdi; Andrew J. Lilly; Yosuke Tanaka; Adam C. Wilkinson; Florian Buettner; Iain C. Macaulay; Wajid Jawaid; Evangelia Diamanti; Shin-Ichi Nishikawa; Nir Piterman; Valerie Kouskoff; Fabian J. Theis; Jasmin Fisher; Berthold Göttgens

Reconstruction of the molecular pathways controlling organ development has been hampered by a lack of methods to resolve embryonic progenitor cells. Here we describe a strategy to address this problem that combines gene expression profiling of large numbers of single cells with data analysis based on diffusion maps for dimensionality reduction and network synthesis from state transition graphs. Applying the approach to hematopoietic development in the mouse embryo, we map the progression of mesoderm toward blood using single-cell gene expression analysis of 3,934 cells with blood-forming potential captured at four time points between E7.0 and E8.5. Transitions between individual cellular states are then used as input to develop a single-cell network synthesis toolkit to generate a computationally executable transcriptional regulatory network model of blood development. Several model predictions concerning the roles of Sox and Hox factors are validated experimentally. Our results demonstrate that single-cell analysis of a developing organ coupled with computational approaches can reveal the transcriptional programs that underpin organogenesis.


Cell Stem Cell | 2015

Combined Single-Cell Functional and Gene Expression Analysis Resolves Heterogeneity within Stem Cell Populations

Nicola K. Wilson; David G. Kent; Florian Buettner; Mona Shehata; Iain C. Macaulay; Fernando J. Calero-Nieto; Manuel Sánchez Castillo; Caroline Anna Oedekoven; Evangelia Diamanti; Reiner Schulte; Chris P. Ponting; Thierry Voet; Carlos Caldas; John Stingl; Anthony R. Green; Fabian J. Theis; Berthold Göttgens

Summary Heterogeneity within the self-renewal durability of adult hematopoietic stem cells (HSCs) challenges our understanding of the molecular framework underlying HSC function. Gene expression studies have been hampered by the presence of multiple HSC subtypes and contaminating non-HSCs in bulk HSC populations. To gain deeper insight into the gene expression program of murine HSCs, we combined single-cell functional assays with flow cytometric index sorting and single-cell gene expression assays. Through bioinformatic integration of these datasets, we designed an unbiased sorting strategy that separates non-HSCs away from HSCs, and single-cell transplantation experiments using the enriched population were combined with RNA-seq data to identify key molecules that associate with long-term durable self-renewal, producing a single-cell molecular dataset that is linked to functional stem cell activity. Finally, we demonstrated the broader applicability of this approach for linking key molecules with defined cellular functions in another stem cell system.


Science | 2014

Transcriptional diversity during lineage commitment of human blood progenitors

Lu Chen; Myrto Kostadima; Joost H.A. Martens; Giovanni Canu; Sara P. Garcia; Ernest Turro; Kate Downes; Iain C. Macaulay; Ewa Bielczyk-Maczyńska; Sophia Coe; Samantha Farrow; Pawan Poudel; Frances Burden; Sjoert B. G. Jansen; William Astle; Antony P. Attwood; Tadbir K. Bariana; Bernard de Bono; Alessandra Breschi; John Chambers; Fizzah Choudry; Laura Clarke; Paul Coupland; Martijn van der Ent; Wendy N. Erber; Joop H. Jansen; Rémi Favier; Matthew Fenech; Nicola S. Foad; Kathleen Freson

Introduction Blood production in humans culminates in the daily release of around 1011 cells into the circulation, mainly platelets and red blood cells. All blood cells originate from a minute population of hematopoietic stem cells (HSCs) that expands and differentiates into progenitor cells with increasingly restricted lineage choice. Characterizing alternative splicing events involved in hematopoiesis is critical for interpreting the effects of mutations leading to inherited disorders and blood cancers and for the rational design of strategies to advance transplantation and regenerative medicine. Overview of methodology. RNA-sequencing reads from human blood progenitors [opaque cells in (A)] were mapped to the transcriptome to quantify gene and transcript expression. Reads were also mapped to the genome to identify novel splice junctions and characterize alternative splicing events (B). Rationale To address this, we explored the transcriptional diversity of human blood progenitors by sequencing RNA from six progenitor and two precursor populations representing the classical myeloid commitment stages of hematopoiesis and the main lymphoid stage. Data were aligned to the human reference transcriptome and genome to quantify known transcript isoforms and to identify novel splicing events, respectively. We used Bayesian polytomous model selection to classify transcripts into distinct expression patterns across the three cell types that comprise each differentiation step. Results We identified extensive transcriptional changes involving 6711 genes and 10,724 transcripts and validated a number of these. Many of the changes at the transcript isoform level did not result in significant changes at the gene expression level. Moreover, we identified transcripts unique to each of the progenitor populations, observing enrichment in non–protein-coding elements at the early stages of differentiation. We discovered 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes and often resulting in the gain or loss of functional domains. Of the alternative splice sites displaying differential usage, 73% resulted in exon-skipping events involving at least one protein domain (38.5%) or introducing a premature stop codon (26%). Enrichment analysis of RNA-binding motifs provided insights into the regulation of cell type–specific splicing events. To demonstrate the importance of specific isoforms in driving lineage fating events, we investigated the role of a transcription factor highlighted by our analyses. Our data show that nuclear factor I/B (NFIB) is highly expressed in megakaryocytes and that it is transcribed from an unannotated transcription start site preceding a novel exon. The novel NFIB isoform lacks the DNA binding/dimerization domain and therefore is unable to interact with its binding partner, NFIC. We further show that NFIB and NFIC are important in megakaryocyte differentiation. Conclusion We produced a quantitative catalog of transcriptional changes and splicing events representing the early progenitors of human blood. Our analyses unveil a previously undetected layer of regulation affecting cell fating, which involves transcriptional isoforms switching without noticeable changes at the gene level and resulting in the gain or loss of protein functions. A BLUEPRINT of immune cell development To determine the epigenetic mechanisms that direct blood cells to develop into the many components of our immune system, the BLUEPRINT consortium examined the regulation of DNA and RNA transcription to dissect the molecular traits that govern blood cell differentiation. By inducing immune responses, Saeed et al. document the epigenetic changes in the genome that underlie immune cell differentiation. Cheng et al. demonstrate that trained monocytes are highly dependent on the breakdown of sugars in the presence of oxygen, which allows cells to produce the energy needed to mount an immune response. Chen et al. examine RNA transcripts and find that specific cell lineages use RNA transcripts of different length and composition (isoforms) to form proteins. Together, the studies reveal how epigenetic effects can drive the development of blood cells involved in the immune system. Science, this issue 10.1126/science.1251086, 10.1126/science.1250684, 10.1126/science.1251033 RNA sequencing identifies how different cell fate decisions are made during blood cell differentiation. Blood cells derive from hematopoietic stem cells through stepwise fating events. To characterize gene expression programs driving lineage choice, we sequenced RNA from eight primary human hematopoietic progenitor populations representing the major myeloid commitment stages and the main lymphoid stage. We identified extensive cell type–specific expression changes: 6711 genes and 10,724 transcripts, enriched in non–protein-coding elements at early stages of differentiation. In addition, we found 7881 novel splice junctions and 2301 differentially used alternative splicing events, enriched in genes involved in regulatory processes. We demonstrated experimentally cell-specific isoform usage, identifying nuclear factor I/B (NFIB) as a regulator of megakaryocyte maturation—the platelet precursor. Our data highlight the complexity of fating events in closely related progenitor populations, the understanding of which is essential for the advancement of transplantation and regenerative medicine.


Genome Research | 2014

Population and single cell genomics reveal the Aire-dependency, relief from Polycomb silencing and distribution of self-antigen expression in thymic epithelia

Stephen N. Sansom; Noriko Shikama-Dorn; Saule Zhanybekova; Gretel Nusspaumer; Iain C. Macaulay; Mary E. Deadman; Andreas Heger; Chris P. Ponting; Georg A. Holländer

Promiscuous gene expression (PGE) by thymic epithelial cells (TEC) is essential for generating a diverse T cell antigen receptor repertoire tolerant to self-antigens, and thus for avoiding autoimmunity. Nevertheless, the extent and nature of this unusual expression program within TEC populations and single cells are unknown. Using deep transcriptome sequencing of carefully identified mouse TEC subpopulations, we discovered a program of PGE that is common between medullary (m) and cortical TEC, further elaborated in mTEC, and completed in mature mTEC expressing the autoimmune regulator gene (Aire). TEC populations are capable of expressing up to 19,293 protein-coding genes, the highest number of genes known to be expressed in any cell type. Remarkably, in mouse mTEC, Aire expression alone positively regulates 3980 tissue-restricted genes. Notably, the tissue specificities of these genes include known targets of autoimmunity in human AIRE deficiency. Led by the observation that genes induced by Aire expression are generally characterized by a repressive chromatin state in somatic tissues, we found these genes to be strongly associated with H3K27me3 marks in mTEC. Our findings are consistent with AIRE targeting and inducing the promiscuous expression of genes previously epigenetically silenced by Polycomb group proteins. Comparison of the transcriptomes of 174 single mTEC indicates that genes induced by Aire expression are transcribed stochastically at low cell frequency. Furthermore, when present, Aire expression-dependent transcript levels were 16-fold higher, on average, in individual TEC than in the mTEC population.


Nature | 2016

Resolving early mesoderm diversification through single-cell expression profiling

Antonio Scialdone; Yosuke Tanaka; Wajid Jawaid; Victoria Moignard; Nicola K. Wilson; Iain C. Macaulay; John C. Marioni; Berthold Göttgens

In mammals, specification of the three major germ layers occurs during gastrulation, when cells ingressing through the primitive streak differentiate into the precursor cells of major organ systems. However, the molecular mechanisms underlying this process remain unclear, as numbers of gastrulating cells are very limited. In the mouse embryo at embryonic day 6.5, cells located at the junction between the extra-embryonic region and the epiblast on the posterior side of the embryo undergo an epithelial-to-mesenchymal transition and ingress through the primitive streak. Subsequently, cells migrate, either surrounding the prospective ectoderm contributing to the embryo proper, or into the extra-embryonic region to form the yolk sac, umbilical cord and placenta. Fate mapping has shown that mature tissues such as blood and heart originate from specific regions of the pre-gastrula epiblast, but the plasticity of cells within the embryo and the function of key cell-type-specific transcription factors remain unclear. Here we analyse 1,205 cells from the epiblast and nascent Flk1+ mesoderm of gastrulating mouse embryos using single-cell RNA sequencing, representing the first transcriptome-wide in vivo view of early mesoderm formation during mammalian gastrulation. Additionally, using knockout mice, we study the function of Tal1, a key haematopoietic transcription factor, and demonstrate, contrary to previous studies performed using retrospective assays, that Tal1 knockout does not immediately bias precursor cells towards a cardiac fate.

Collaboration


Dive into the Iain C. Macaulay's collaboration.

Top Co-Authors

Avatar

Thierry Voet

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Scialdone

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cordelia Langford

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar

Florian Buettner

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge