Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iain MacCallum is active.

Publication


Featured researches published by Iain MacCallum.


Proceedings of the National Academy of Sciences of the United States of America | 2011

High-quality draft assemblies of mammalian genomes from massively parallel sequence data

Sante Gnerre; Iain MacCallum; Dariusz Przybylski; Filipe J. Ribeiro; Joshua N. Burton; Bruce J. Walker; Ted Sharpe; Giles Hall; Terrance Shea; Sean Sykes; Aaron M. Berlin; Daniel Aird; Maura Costello; Riza Daza; Louise Williams; Robert Nicol; Andreas Gnirke; Chad Nusbaum; Eric S. Lander; David B. Jaffe

Massively parallel DNA sequencing technologies are revolutionizing genomics by making it possible to generate billions of relatively short (~100-base) sequence reads at very low cost. Whereas such data can be readily used for a wide range of biomedical applications, it has proven difficult to use them to generate high-quality de novo genome assemblies of large, repeat-rich vertebrate genomes. To date, the genome assemblies generated from such data have fallen far short of those obtained with the older (but much more expensive) capillary-based sequencing approach. Here, we report the development of an algorithm for genome assembly, ALLPATHS-LG, and its application to massively parallel DNA sequence data from the human and mouse genomes, generated on the Illumina platform. The resulting draft genome assemblies have good accuracy, short-range contiguity, long-range connectivity, and coverage of the genome. In particular, the base accuracy is high (≥99.95%) and the scaffold sizes (N50 size = 11.5 Mb for human and 7.2 Mb for mouse) approach those obtained with capillary-based sequencing. The combination of improved sequencing technology and improved computational methods should now make it possible to increase dramatically the de novo sequencing of large genomes. The ALLPATHS-LG program is available at http://www.broadinstitute.org/science/programs/genome-biology/crd.


Nature | 2013

The African coelacanth genome provides insights into tetrapod evolution.

Chris T. Amemiya; Jessica Alföldi; Alison P. Lee; Shaohua Fan; Hervé Philippe; Iain MacCallum; Ingo Braasch; Tereza Manousaki; Igor Schneider; Nicolas Rohner; Chris Organ; Domitille Chalopin; Jeramiah J. Smith; Mark Robinson; Rosemary A. Dorrington; Marco Gerdol; Bronwen Aken; Maria Assunta Biscotti; Marco Barucca; Denis Baurain; Aaron M. Berlin; Francesco Buonocore; Thorsten Burmester; Michael S. Campbell; Adriana Canapa; John P. Cannon; Alan Christoffels; Gianluca De Moro; Adrienne L. Edkins; Lin Fan

The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.The discovery of a living coelacanth specimen in 1938 was remarkable, as this lineage of lobe-finned fish was thought to have become extinct 70 million years ago. The modern coelacanth looks remarkably similar to many of its ancient relatives, and its evolutionary proximity to our own fish ancestors provides a glimpse of the fish that first walked on land. Here we report the genome sequence of the African coelacanth, Latimeria chalumnae. Through a phylogenomic analysis, we conclude that the lungfish, and not the coelacanth, is the closest living relative of tetrapods. Coelacanth protein-coding genes are significantly more slowly evolving than those of tetrapods, unlike other genomic features. Analyses of changes in genes and regulatory elements during the vertebrate adaptation to land highlight genes involved in immunity, nitrogen excretion and the development of fins, tail, ear, eye, brain and olfaction. Functional assays of enhancers involved in the fin-to-limb transition and in the emergence of extra-embryonic tissues show the importance of the coelacanth genome as a blueprint for understanding tetrapod evolution.


Genome Research | 2011

Assemblathon 1: A competitive assessment of de novo short read assembly methods

Dent Earl; Keith Bradnam; John St. John; Aaron E. Darling; Dawei Lin; Joseph Fass; Hung On Ken Yu; Vince Buffalo; Daniel R. Zerbino; Mark Diekhans; Ngan Nguyen; Pramila Ariyaratne; Wing-Kin Sung; Zemin Ning; Matthias Haimel; Jared T. Simpson; Nuno A. Fonseca; Inanc Birol; T. Roderick Docking; Isaac Ho; Daniel S. Rokhsar; Rayan Chikhi; Dominique Lavenier; Guillaume Chapuis; Delphine Naquin; Nicolas Maillet; Michael C. Schatz; David R. Kelley; Adam M. Phillippy; Sergey Koren

Low-cost short read sequencing technology has revolutionized genomics, though it is only just becoming practical for the high-quality de novo assembly of a novel large genome. We describe the Assemblathon 1 competition, which aimed to comprehensively assess the state of the art in de novo assembly methods when applied to current sequencing technologies. In a collaborative effort, teams were asked to assemble a simulated Illumina HiSeq data set of an unknown, simulated diploid genome. A total of 41 assemblies from 17 different groups were received. Novel haplotype aware assessments of coverage, contiguity, structure, base calling, and copy number were made. We establish that within this benchmark: (1) It is possible to assemble the genome to a high level of coverage and accuracy, and that (2) large differences exist between the assemblies, suggesting room for further improvements in current methods. The simulated benchmark, including the correct answer, the assemblies, and the code that was used to evaluate the assemblies is now public and freely available from http://www.assemblathon.org/.


Nature | 2014

The genomic substrate for adaptive radiation in African cichlid fish

David Brawand; Catherine E. Wagner; Yang I. Li; Milan Malinsky; Irene Keller; Shaohua Fan; Oleg Simakov; Alvin Yu Jin Ng; Zhi Wei Lim; Etienne Bezault; Jason Turner-Maier; Jeremy A. Johnson; Rosa M. Alcazar; Hyun Ji Noh; Pamela Russell; Bronwen Aken; Jessica Alföldi; Chris T. Amemiya; Naoual Azzouzi; Jean-François Baroiller; Frédérique Barloy-Hubler; Aaron M. Berlin; Ryan F. Bloomquist; Karen L. Carleton; Matthew A. Conte; Helena D'Cotta; Orly Eshel; Leslie Gaffney; Francis Galibert; Hugo F. Gante

Cichlid fishes are famous for large, diverse and replicated adaptive radiations in the Great Lakes of East Africa. To understand the molecular mechanisms underlying cichlid phenotypic diversity, we sequenced the genomes and transcriptomes of five lineages of African cichlids: the Nile tilapia (Oreochromis niloticus), an ancestral lineage with low diversity; and four members of the East African lineage: Neolamprologus brichardi/pulcher (older radiation, Lake Tanganyika), Metriaclima zebra (recent radiation, Lake Malawi), Pundamilia nyererei (very recent radiation, Lake Victoria), and Astatotilapia burtoni (riverine species around Lake Tanganyika). We found an excess of gene duplications in the East African lineage compared to tilapia and other teleosts, an abundance of non-coding element divergence, accelerated coding sequence evolution, expression divergence associated with transposable element insertions, and regulation by novel microRNAs. In addition, we analysed sequence data from sixty individuals representing six closely related species from Lake Victoria, and show genome-wide diversifying selection on coding and regulatory variants, some of which were recruited from ancient polymorphisms. We conclude that a number of molecular mechanisms shaped East African cichlid genomes, and that amassing of standing variation during periods of relaxed purifying selection may have been important in facilitating subsequent evolutionary diversification.


GigaScience | 2013

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species

Keith Bradnam; Joseph Fass; Anton Alexandrov; Paul Baranay; Michael Bechner; Inanc Birol; Sébastien Boisvert; Jarrod Chapman; Guillaume Chapuis; Rayan Chikhi; Hamidreza Chitsaz; Wen Chi Chou; Jacques Corbeil; Cristian Del Fabbro; Roderick R. Docking; Richard Durbin; Dent Earl; Scott J. Emrich; Pavel Fedotov; Nuno A. Fonseca; Ganeshkumar Ganapathy; Richard A. Gibbs; Sante Gnerre; Élénie Godzaridis; Steve Goldstein; Matthias Haimel; Giles Hall; David Haussler; Joseph Hiatt; Isaac Ho

BackgroundThe process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.ResultsIn Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.ConclusionsMany current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


Genome Biology | 2009

ALLPATHS 2: small genomes assembled accurately and with high continuity from short paired reads.

Iain MacCallum; Dariusz Przybylski; Sante Gnerre; Joshua N. Burton; Ilya Shlyakhter; Andreas Gnirke; Joel A. Malek; Kevin McKernan; Swati Ranade; Terrance Shea; Louise Williams; Chad Nusbaum; David B. Jaffe

We demonstrate that genome sequences approaching finished quality can be generated from short paired reads. Using 36 base (fragment) and 26 base (jumping) reads from five microbial genomes of varied GC composition and sizes up to 40 Mb, ALLPATHS2 generated assemblies with long, accurate contigs and scaffolds. Velvet and EULER-SR were less accurate. For example, for Escherichia coli, the fraction of 10-kb stretches that were perfect was 99.8% (ALLPATHS2), 68.7% (Velvet), and 42.1% (EULER-SR).


GigaScience | 2013

Assemblathon 2: evaluating de novo

Keith Bradnam; Joseph Fass; Anton Alexandrov; Paul Baranay; Michael Bechner; Inanc Birol; Sébastien Boisvert; Jarrod Chapman; Guillaume Chapuis; Rayan Chikhi; Hamidreza Chitsaz; Wen-Chi Chou; Jacques Corbeil; Cristian Del Fabbro; T. Roderick Docking; Richard Durbin; Dent Earl; Scott J. Emrich; Pavel Fedotov; Nuno A. Fonseca; Ganeshkumar Ganapathy; Richard A. Gibbs; Sante Gnerre; Élénie Godzaridis; Steve Goldstein; Matthias Haimel; Giles Hall; David Haussler; Joseph Hiatt; Isaac Ho

BackgroundThe process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.ResultsIn Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.ConclusionsMany current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


Genome Research | 2012

Paired-end sequencing of Fosmid libraries by Illumina

Louise Williams; Diana Tabbaa; Na Li; Aaron M. Berlin; Terrance Shea; Iain MacCallum; Michael S. Lawrence; Yotam Drier; Gad Getz; Sarah K. Young; David B. Jaffe; Chad Nusbaum; Andreas Gnirke

Eliminating the bacterial cloning step has been a major factor in the vastly improved efficiency of massively parallel sequencing approaches. However, this also has made it a technical challenge to produce the modern equivalent of the Fosmid- or BAC-end sequences that were crucial for assembling and analyzing complex genomes during the Sanger-based sequencing era. To close this technology gap, we developed Fosill, a method for converting Fosmids to Illumina-compatible jumping libraries. We constructed Fosmid libraries in vectors with Illumina primer sequences and specific nicking sites flanking the cloning site. Our family of pFosill vectors allows multiplex Fosmid cloning of end-tagged genomic fragments without physical size selection and is compatible with standard and multiplex paired-end Illumina sequencing. To excise the bulk of each cloned insert, we introduced two nicks in the vector, translated them into the inserts, and cleaved them. Recircularization of the vector via coligation of insert termini followed by inverse PCR generates a jumping library for paired-end sequencing with 101-base reads. The yield of unique Fosmid-sized jumps is sufficiently high, and the background of short, incorrectly spaced and chimeric artifacts sufficiently low, to enable applications such as mapping of structural variation and scaffolding of de novo assemblies. We demonstrate the power of Fosill to map genome rearrangements in a cancer cell line and identified three fusion genes that were corroborated by RNA-seq data. Our Fosill-powered assembly of the mouse genome has an N50 scaffold length of 17.0 Mb, rivaling the connectivity (16.9 Mb) of the Sanger-sequencing based draft assembly.


Archive | 2013

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species - eScholarship

Keith Bradnam; Joseph Fass; Anton Alexandrov; Paul Baranay; Michael Bechner; Inanc Birol; Sébastien Boisvert; Jarrod Chapman; Guillaume Chapuis; Rayan Chikhi; Hamidreza Chitsaz; Wen-Chi Chou; Jacques Corbeil; Cristian Del Fabbro; T Docking; Richard Durbin; Dent Earl; Scott J. Emrich; Pavel Fedotov; Nuno A. Fonseca; Ganeshkumar Ganapathy; Richard A. Gibbs; Sante Gnerre; Élénie Godzaridis; Steve Goldstein; Matthias Haimel; Giles Hall; David Haussler; Joseph Hiatt; Isaac Ho

BackgroundThe process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.ResultsIn Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies.ConclusionsMany current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another.


Genome Research | 2008

ALLPATHS: De novo assembly of whole-genome shotgun microreads

Jonathan Butler; Iain MacCallum; Michael Kleber; Ilya Shlyakhter; Matthew K. Belmonte; Eric S. Lander; Chad Nusbaum; David B. Jaffe

Collaboration


Dive into the Iain MacCallum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dent Earl

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isaac Ho

United States Department of Energy

View shared research outputs
Top Co-Authors

Avatar

Joseph Fass

University of California

View shared research outputs
Top Co-Authors

Avatar

Keith Bradnam

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge