Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ian B. Burgess is active.

Publication


Featured researches published by Ian B. Burgess.


Optics Letters | 2012

Integrated TiO2 resonators for visible photonics.

Jennifer T. Choy; Jonathan D. B. Bradley; Parag B. Deotare; Ian B. Burgess; Christopher C. Evans; Eric Mazur; Marko Loncar

We demonstrate waveguide-coupled titanium dioxide (TiO(2) racetrack resonators with loaded quality factors of 2.2×10(4) for the visible wavelengths. The structures were fabricated in sputtered TiO(2) thin films on oxidized silicon substrates using standard top-down nanofabrication techniques, and passively probed in transmission measurements using a tunable red laser.


Optics Letters | 2009

Ultra-high-Q TE/TM dual-polarized photonic crystal nanocavities

Yinan Zhang; Murray W. McCutcheon; Ian B. Burgess; Marko Loncar

We demonstrate photonic crystal nanobeam cavities that support both TE- and TM-polarized modes, each with a Q factor greater than one million and a mode volume on the order of the cubic wavelength. We show that these orthogonally polarized modes have a tunable frequency separation and a high nonlinear spatial overlap. We expect these cavities to have a variety of applications in resonance-enhanced nonlinear optics.


Physical Review Letters | 2009

Accessible Light Bullets via Synergetic Nonlinearities

Ian B. Burgess; Marco Peccianti; Gaetano Assanto; Roberto Morandotti

We introduce a new form of stable spatiotemporal self-trapped optical packets stemming from the interplay of local and nonlocal nonlinearities. Pulsed self-trapped light beams in media with both electronic and molecular nonlinear responses are addressed to prove that spatial and temporal effects can be decoupled, allowing for independent tuning. We numerically demonstrate that (3 + 1)D light bullets and antibullets, i.e., bright and dark temporal solitons embedded in stable (2 + 1)D nonlocal spatial solitons, can be generated in reorientational media under experimentally feasible conditions.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies

Nicolas Vogel; Stefanie Utech; Grant Tyler England; Tanya Shirman; Katherine R. Phillips; Natalie Koay; Ian B. Burgess; Mathias Kolle; David A. Weitz; Joanna Aizenberg

Significance Controlling the internal structure over multiple length scales can produce materials with superior properties. This hierarchical design is ubiquitous in nature where materials have evolved to show maximum functionality from a limited choice of available building blocks. Mimicking the emergence of functionality from simple building blocks is a key challenge for man-made materials. Here, we show how a simple confined self-assembly of colloidal particles leads to a complex geometry that displays a surprising variety of optical effects. These effects are a result of the intricate interaction of light with the structural features at different length scales, and the geometry of the self-assembled structure. The results underline the importance of controlling assembly processes over multiple length scales to tailor properties and maximize performance. Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature.


Journal of Materials Chemistry C | 2013

Structural colour in colourimetric sensors and indicators

Ian B. Burgess; Marko Loncar; Joanna Aizenberg

Colourimetric sensors and indicators are widely used because of their low cost and simplicity. A significant challenge associated with the design of this type of device is that the sensing mechanism must be simultaneously optimised for the sensitivity of the response and a visually perceptible colour change. Structural colour, derived from coherent scattering rather than molecular absorption, is a promising route to colourimetric sensor design because colour shifts are tied to changes in one of many physical properties of a material, rather than a specific chemical process. This Feature Article presents an overview of the development of low-cost sensors and indicators that exploit structural colour. Building upon recent advances in structurally adaptive materials design, structural colour sensors have been developed for a wide variety of previously inaccessible physical (e.g. temperature, strain, electric fields) and chemical stimuli (e.g. small organic molecules, charged species, biomacromolecules and metabolites). These devices, often exceeding the state of the art in performance, simplicity or both, have bright prospects for market impact in areas such as environmental monitoring, workplace hazard identification, threat detection, and point-of-care diagnostics. Finding the ideal balance between performance (e.g. sensitivity, specificity, reproducibility, etc.) and simplicity (e.g. colourimetric vs. spectroscopic readout) will be one of the most critical elements in the further development of structural colour sensors. This balance should be driven largely by the market demands and competing technologies.


Optics Express | 2013

Single particle detection in CMOS compatible photonic crystal nanobeam cavities

Qimin Quan; Daniel L. Floyd; Ian B. Burgess; Parag B. Deotare; Ian W. Frank; Sindy K. Y. Tang; Rob Ilic; Marko Loncar

We report the label-free detection of single particles using photonic crystal nanobeam cavities fabricated in silicon-on-insulator platform, and embedded inside microfluidic channels fabricated in poly-dimethylsiloxane (PDMS). Our system operates in the telecommunication wavelength band, thus leveraging the widely available, robust and tunable telecom laser sources. Using this approach, we demonstrated the detection of polystyrene nanoparticles with dimensions down to 12.5nm in radius. Furthermore, binding events of a single streptavidin molecule have been observed.


Optics Express | 2009

Design of an efficient terahertz source using triply resonant nonlinear photonic crystal cavities.

Ian B. Burgess; Yinan Zhang; Murray W. McCutcheon; Alejandro W. Rodriguez; Jorge Bravo-Abad; Steven G. Johnson; Marko Loncar

We propose a scheme for efficient cavity-enhanced nonlinear THz generation via difference-frequency generation (DFG) processes using a triply resonant system based on photonic crystal cavities. We show that high nonlinear overlap can be achieved by coupling a THz cavity to a doubly-resonant, dual-polarization near-infrared (e.g. telecom band) photonic-crystal nanobeam cavity, allowing the mixing of three mutually orthogonal fundamental cavity modes through a chi((2)) nonlinearity. We demonstrate through coupled-mode theory that complete depletion of the pump frequency - i.e., quantum-limited conversion - is possible. We show that the output power at the point of optimal total conversion efficiency is adjustable by varying the mode quality (Q) factors.


Langmuir | 2014

Directional Wetting in Anisotropic Inverse Opals

Katherine R. Phillips; Nicolas Vogel; Ian B. Burgess; Carole C. Perry; Joanna Aizenberg

Porous materials display interesting transport phenomena due to restricted motion of fluids within the nano- to microscale voids. Here, we investigate how liquid wetting in highly ordered inverse opals is affected by anisotropy in pore geometry. We compare samples with different degrees of pore asphericity and find different wetting patterns depending on the pore shape. Highly anisotropic structures are infiltrated more easily than their isotropic counterparts. Further, the wetting of anisotropic inverse opals is directional, with liquids filling from the side more easily. This effect is supported by percolation simulations as well as direct observations of wetting using time-resolved optical microscopy.


Optics Express | 2014

Hierarchical structural control of visual properties in self-assembled photonic-plasmonic pigments

Natalie Koay; Ian B. Burgess; Theresa M. Kay; Bryan A. Nerger; Malaika Miles-Rossouw; Tanya Shirman; Thy L. Vu; Grant Tyler England; Katherine R. Phillips; Stefanie Utech; Nicolas Vogel; Mathias Kolle; Joanna Aizenberg

We present a simple one-pot co-assembly method for the synthesis of hierarchically structured pigment particles consisting of silica inverse-opal bricks that are doped with plasmonic absorbers. We study the interplay between the plasmonic and photonic resonances and their effect on the visual appearance of macroscopic collections of photonic bricks that are distributed in randomized orientations. Manipulating the pore geometry tunes the wavelength- and angle-dependence of the scattering profile, which can be engineered to produce angle-dependent Bragg resonances that can either enhance or contrast with the color produced by the plasmonic absorber. By controlling the overall dimensions of the photonic bricks and their aspect ratios, their preferential alignment can either be encouraged or suppressed. This causes the Bragg resonance to appear either as uniform color travel in the former case or as sparse iridescent sparkle in the latter case. By manipulating the surface chemistry of these photonic bricks, which introduces a fourth length-scale (molecular) of independent tuning into our design, we can further engineer interactions between liquids and the pores. This allows the structural color to be maintained in oil-based formulations, and enables the creation of dynamic liquid-responsive images from the pigment.


Bioinspiration & Biomimetics | 2013

Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.

Ian B. Burgess; Joanna Aizenberg; Marko Loncar

Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

Collaboration


Dive into the Ian B. Burgess's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathias Kolle

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge