Ian Brierley
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ian Brierley.
Cell | 1989
Ian Brierley; Paul Digard; Stephen C. Inglis
n Abstractn n The genomic RNA of the coronavirus IBV contains an efficient ribosomal frameshifting signal at the junction of two overlapping open reading frames. We have defined by deletion analysis an 86 nucleotide sequence encompassing the overlap region which is sufficient to allow frameshifting in a heterologous context. The upstream boundary of the signal consists of the sequence UUUAAAC, which is the likely site of ribosomal slippage. We show by creation of complementary nucleotide changes that the RNA downstream of this “slippery” sequence folds into a tertiary structure termed a pseudoknot, the formation of which is essential for efficient frameshifting.n n
Journal of General Virology | 2012
Andrew E. Firth; Ian Brierley
Viral protein synthesis is completely dependent upon the translational machinery of the host cell. However, many RNA virus transcripts have marked structural differences from cellular mRNAs that preclude canonical translation initiation, such as the absence of a 5′ cap structure or the presence of highly structured 5′UTRs containing replication and/or packaging signals. Furthermore, whilst the great majority of cellular mRNAs are apparently monocistronic, RNA viruses must often express multiple proteins from their mRNAs. In addition, RNA viruses have very compact genomes and are under intense selective pressure to optimize usage of the available sequence space. Together, these features have driven the evolution of a plethora of non-canonical translational mechanisms in RNA viruses that help them to meet these challenges. Here, we review the mechanisms utilized by RNA viruses of eukaryotes, focusing on internal ribosome entry, leaky scanning, non-AUG initiation, ribosome shunting, reinitiation, ribosomal frameshifting and stop-codon readthrough. The review will highlight recently discovered examples of unusual translational strategies, besides revisiting some classical cases.
Molecular Cell | 2004
Olivier Namy; Jean-Pierre Rousset; Sawsan Napthine; Ian Brierley
Reprogrammed genetic decoding signals in mRNAs productively overwrite the normal decoding rules of translation. These recoding signals are associated with sites of programmed ribosomal frameshifting, hopping, termination codon suppression, and the incorporation of the unusual amino acids selenocysteine and pyrrolysine. This review summarizes current knowledge of the structure and function of recoding signals in cellular genes, the biological importance of recoding in gene regulation, and ways to identify new recoded genes.
The EMBO Journal | 1987
Ian Brierley; M. E. G. Boursnell; M. M. Binns; B. Bilimoria; V. C. Blok; T. D. K. Brown; S. C. Inglis
The polymerase‐encoding region of the genomic RNA of the coronavirus infectious bronchitis virus (IBV) contains two very large, briefly overlapping open reading frames (ORF), F1 and F2, and it has been suggested on the basis of sequence analysis that expression of the downstream ORF, F2, might be mediated through ribosomal frame‐shifting. To examine this possibility a cDNA fragment containing the F1/F2 overlap region was cloned within a marker gene and placed under the control of the bacteriophage SP6 promoter in a recombinant plasmid. Messenger RNA transcribed from this plasmid, when translated in cell‐free systems, specified the synthesis of polypeptides whose size was entirely consistent with the products predicted by an efficient ribosomal frame‐shifting event within the overlap region. The nature of the products was confirmed by their reactivity with antisera raised against defined portions of the flanking marker gene. This is the first non‐retroviral example of ribosomal frame‐shifting in higher eukaryotes.
Journal of General Virology | 1995
Ian Brierley
Introduction. Accurate maintenance of the translational reading frame by ribosomes is essential for the production of functional proteins and unsurprisingly, errors in frame maintenance have been estimated to occur at rates probably lower than 5 × 10-5 per codon (Kurland, 1992). However, an increasing number of examples have been documented where a purposeful shift in reading frame is programmed into the mRNA and serves an essential function (Gesteland et al., 1992; Atkins & Gesteland, 1995). Highly efficient ribosomal frameshifting is an example of such a programmed frameshift site. In response to certain signals in the mRNA, ribosomes are induced to move into the -1 reading frame (in a 5′ direction) at a specific point and continue translation in the new reading frame. The phenomenon was first described in 1985 as the way in which the Gag-Pol polyprotein of the retrovirus Rous sarcoma virus (RSV) is expressed from the overlapping gag and pol open reading frames (ORFs) (Jacks & Varmus, 1985) and to date, most examples of frameshifting come from virus systems.
Nature | 2006
Olivier Namy; Stephen J. Moran; David I. Stuart; Robert J. C. Gilbert; Ian Brierley
The triplet-based genetic code requires that translating ribosomes maintain the reading frame of a messenger RNA faithfully to ensure correct protein synthesis. However, in programmed -1 ribosomal frameshifting, a specific subversion of frame maintenance takes place, wherein the ribosome is forced to shift one nucleotide backwards into an overlapping reading frame and to translate an entirely new sequence of amino acids. This process is indispensable in the replication of numerous viral pathogens, including HIV and the coronavirus associated with severe acute respiratory syndrome, and is also exploited in the expression of several cellular genes. Frameshifting is promoted by an mRNA signal composed of two essential elements: a heptanucleotide ‘slippery’ sequence and an adjacent mRNA secondary structure, most often an mRNA pseudoknot. How these components operate together to manipulate the ribosome is unknown. Here we describe the observation of a ribosome–mRNA pseudoknot complex that is stalled in the process of -1 frameshifting. Cryoelectron microscopic imaging of purified mammalian 80S ribosomes from rabbit reticulocytes paused at a coronavirus pseudoknot reveals an intermediate of the frameshifting process. From this it can be seen how the pseudoknot interacts with the ribosome to block the mRNA entrance channel, compromising the translocation process and leading to a spring-like deformation of the P-site transfer RNA. In addition, we identify movements of the likely eukaryotic ribosomal helicase and confirm a direct interaction between the translocase eEF2 and the P-site tRNA. Together, the structural changes provide a mechanical explanation of how the pseudoknot manipulates the ribosome into a different reading frame.
Molecular and Cellular Biology | 1993
P Somogyi; Alison J. Jenner; Ian Brierley; Stephen C. Inglis
The genomic RNA of the coronavirus infectious bronchitis virus contains an efficient ribosomal frameshift signal which comprises a heptanucleotide slippery sequence followed by an RNA pseudoknot structure. The presence of the pseudoknot is essential for high-efficiency frameshifting, and it has been suggested that its function may be to slow or stall the ribosome in the vicinity of the slippery sequence. To test this possibility, we have studied translational elongation in vitro on mRNAs engineered to contain a well-defined pseudoknot-forming sequence. Insertion of the pseudoknot at a specific location within the influenza virus PB1 mRNA resulted in the production of a new translational intermediate corresponding to the size expected for ribosomal arrest at the pseudoknot. The appearance of this protein was transient, indicating that it was a true paused intermediate rather than a dead-end product, and mutational analysis confirmed that its appearance was dependent on the presence of a pseudoknot structure within the mRNA. These observations raise the possibility that a pause is required for the frameshift process. The extent of pausing at the pseudoknot was compared with that observed at a sequence designed to form a simple stem-loop structure with the same base pairs as the pseudoknot. This structure proved to be a less effective barrier to the elongating ribosome than the pseudoknot and in addition was unable to direct efficient ribosomal frameshifting, as would be expected if pausing plays an important role in frameshifting. However, the stem-loop was still able to induce significant pausing, and so this effect alone may be insufficient to account for the contribution of the pseudoknot to frameshifting.
Journal of Molecular Biology | 1992
Ian Brierley; Alison J. Jenner; Stephen C. Inglis
n Abstractn n The ribosomal frameshift signal in the genomic RNA of the coronavirus IBV is composed of two elements, a heptanucleotide “slippery-sequence” and a downstream RNA pseudoknot. We have investigated the kinds of slippery sequence that can function at the IBV frameshift site by analysing the frameshifting properties of a series of slippery-sequence mutants. We firstly confirmed that the site of frameshifting in IBV was at the heptanucleotide stretch UUUAAAC, and then used our knowledge of the pseudoknot structure and a suitable reporter gene to prepare an expression construct that allowed both the magnitude and direction of ribosomal frameshifting to be determined for candidate slippery sequences. Our results show that in almost all of the sequences tested, frameshifting is strictly into the −1 reading frame. Monotonous runs of nucleotides, however, gave detectable levels of a n n −2n +1n n frameshift product, and U stretches in particular gave significant levels (2% to 21%). Preliminary evidence suggests that the RNA pseudoknot may play a role in influencing frameshift direction. The spectrum of slip-sequences tested in this analysis included all those known or suspected to be utilized in vivo. Our results indicate that triplets of A, C, G and U are functional when decoded in the ribosomal P-site following slippage (n n XXXn n YYYN) although C triplets were the least effective. In the A-site (XXYn n YYYn n N), triplets of C and G were non-functional. The identity of the nucleotide at position 7 of the slippery sequence (XXXYYYn n Nn n ) was found to be a critical determinant of frameshift efficiency and we show that a hierarchy of frameshifting exists for A-site codons. These observations lead us to suggest that ribosomal frameshifting at a particular site is determined, at least in part, by the strength of the interaction of normal cellular tRNAs with the A-site codon and does not necessarily involve specialized “shifty” tRNAs.n n
Molecular and Cellular Biology | 2001
Harry Kontos; Sawsan Napthine; Ian Brierley
ABSTRACT Here we investigated ribosomal pausing at sites of programmed −1 ribosomal frameshifting, using translational elongation and ribosome heelprint assays. The site of pausing at the frameshift signal of infectious bronchitis virus (IBV) was determined and was consistent with an RNA pseudoknot-induced pause that placed the ribosomal P- and A-sites over the slippery sequence. Similarly, pausing at the simian retrovirus 1 gag/pol signal, which contains a different kind of frameshifter pseudoknot, also placed the ribosome over the slippery sequence, supporting a role for pausing in frameshifting. However, a simple correlation between pausing and frameshifting was lacking. Firstly, a stem-loop structure closely related to the IBV pseudoknot, although unable to stimulate efficient frameshifting, paused ribosomes to a similar extent and at the same place on the mRNA as a parental pseudoknot. Secondly, an identical pausing pattern was induced by two pseudoknots differing only by a single loop 2 nucleotide yet with different functionalities in frameshifting. The final observation arose from an assessment of the impact of reading phase on pausing. Given that ribosomes advance in triplet fashion, we tested whether the reading frame in which ribosomes encounter an RNA structure (the reading phase) would influence pausing. We found that the reading phase did influence pausing but unexpectedly, the mRNA with the pseudoknot in the phase which gave the least pausing was found to promote frameshifting more efficiently than the other variants. Overall, these experiments support the view that pausing alone is insufficient to mediate frameshifting and additional events are required. The phase dependence of pausing may be indicative of an activity in the ribosome that requires an optimal contact with mRNA secondary structures for efficient unwinding.
Journal of General Virology | 1997
Terence P. Herbert; Ian Brierley; T. D. K. Brown
125I protein labelling of oligo(dT)-selected RNA from feline calicivirus (FCV)-infected cells revealed that the genomic and 2.4 kb subgenomic RNAs of FCV are linked to a 15 kDa protein (VPg). Proteinase K treatment of FCV RNA, to remove VPg, led to a decrease in the translatability of the RNA, but there was no obvious change in the site of RNA initiation. Addition of the cap analogue 7-methylGTP to in vitro translations had no effect on the translation of FCV RNA, suggesting that FCV RNA is translated by a cap-independent mechanism. Further evidence that FCV RNA is translated by an unusual mechanism was obtained by translating FCV RNA in vitro at a range of K+ concentrations. FCV RNA was able to direct translation at K+ concentrations at which cellular RNA translation was inhibited.