Sawsan Napthine
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Sawsan Napthine.
Molecular and Cellular Biology | 2001
Harry Kontos; Sawsan Napthine; Ian Brierley
ABSTRACT Here we investigated ribosomal pausing at sites of programmed −1 ribosomal frameshifting, using translational elongation and ribosome heelprint assays. The site of pausing at the frameshift signal of infectious bronchitis virus (IBV) was determined and was consistent with an RNA pseudoknot-induced pause that placed the ribosomal P- and A-sites over the slippery sequence. Similarly, pausing at the simian retrovirus 1 gag/pol signal, which contains a different kind of frameshifter pseudoknot, also placed the ribosome over the slippery sequence, supporting a role for pausing in frameshifting. However, a simple correlation between pausing and frameshifting was lacking. Firstly, a stem-loop structure closely related to the IBV pseudoknot, although unable to stimulate efficient frameshifting, paused ribosomes to a similar extent and at the same place on the mRNA as a parental pseudoknot. Secondly, an identical pausing pattern was induced by two pseudoknots differing only by a single loop 2 nucleotide yet with different functionalities in frameshifting. The final observation arose from an assessment of the impact of reading phase on pausing. Given that ribosomes advance in triplet fashion, we tested whether the reading frame in which ribosomes encounter an RNA structure (the reading phase) would influence pausing. We found that the reading phase did influence pausing but unexpectedly, the mRNA with the pseudoknot in the phase which gave the least pausing was found to promote frameshifting more efficiently than the other variants. Overall, these experiments support the view that pausing alone is insufficient to mediate frameshifting and additional events are required. The phase dependence of pausing may be indicative of an activity in the ribosome that requires an optimal contact with mRNA secondary structures for efficient unwinding.
Journal of Molecular Biology | 1999
Sawsan Napthine; Jan Liphardt; Alison J Bloys; Samantha Routledge; Ian Brierley
Abstract The ribosomal frameshifting signal present in the genomic RNA of the coronavirus infectious bronchitis virus (IBV) contains a classic hairpin-type RNA pseudoknot that is believed to possess coaxially stacked stems of 11 bp (stem 1) and 6 bp (stem 2). We investigated the influence of stem 1 length on the frameshift process by measuring the frameshift efficiency in vitro of a series of IBV-based pseudoknots whose stem 1 length was varied from 4 to 13 bp in single base-pair increments. Efficient frameshifting depended upon the presence of a minimum of 11 bp; pseudoknots with a shorter stem 1 were either non-functional or had reduced frameshift efficiency, despite the fact that a number of them had a stem 1 with a predicted stability equal to or greater than that of the wild-type IBV pseudoknot. An upper limit for stem 1 length was not determined, but pseudoknots containing a 12 or 13 bp stem 1 were fully functional. Structure probing analysis was carried out on RNAs containing either a ten or 11 bp stem 1; these experiments confirmed that both RNAs formed pseudoknots and appeared to be indistinguishable in conformation. Thus the difference in frameshifting efficiency seen with the two structures was not simply due to an inability of the 10 bp stem 1 construct to fold into a pseudoknot. In an attempt to identify other parameters which could account for the poor functionality of the shorter stem 1-containing pseudoknots, we investigated, in the context of the 10 bp stem 1 construct, the influence on frameshifting of altering the slippery sequence-pseudoknot spacing distance, loop 2 length, and the number of G residues at the bottom of the 5′-arm of stem 1. For each parameter, it was possible to find a condition where a modest stimulation of frameshifting was observable (about twofold, from seven to a maximal 17 %), but we were unable to find a situation where frameshifting approached the levels seen with 11 bp stem 1 constructs (48-57 %). Furthermore, in the next smaller construct (9 bp stem 1), changing the bottom four base-pairs to G·C (the optimal base composition) only stimulated frameshifting from 3 to 6 %, an efficiency about tenfold lower than seen with the 11 bp construct. Thus stem 1 length is a major factor in determining the functionality of this class of pseudoknot and this has implications for models of the frameshift process.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Yanhua Li; Emmely E. Treffers; Sawsan Napthine; Ali Tas; Longchao Zhu; Zhi Sun; Susanne Bell; Brian L. Mark; Peter A. van Veelen; Martijn J. van Hemert; Andrew E. Firth; Ian Brierley; Eric J. Snijder; Ying Fang
Significance Ribosomes synthesize proteins by translating mRNAs into linear chains of amino acids through the decoding of consecutive nucleotide triplets (codons). Specific mRNA signals, however, can stimulate ribosomes to shift into an alternative triplet reading frame (ribosomal frameshifting) resulting in translation of a different protein. Typically, such signals are regions of intramolecular nucleotide base-pairing in the mRNA which form structures that stall ribosome progress. Here we show that the frameshifting signal used to express the nsp2TF and nsp2N proteins of porcine reproductive and respiratory syndrome virus, an important swine pathogen, requires the action of a transacting viral protein rather than a structured RNA. This novel mechanism of gene expression may also be used by other viruses or in cellular gene expression. Programmed −1 ribosomal frameshifting (−1 PRF) is a widely used translational mechanism facilitating the expression of two polypeptides from a single mRNA. Commonly, the ribosome interacts with an mRNA secondary structure that promotes −1 frameshifting on a homopolymeric slippery sequence. Recently, we described an unusual −2 frameshifting (−2 PRF) signal directing efficient expression of a transframe protein [nonstructural protein 2TF (nsp2TF)] of porcine reproductive and respiratory syndrome virus (PRRSV) from an alternative reading frame overlapping the viral replicase gene. Unusually, this arterivirus PRF signal lacks an obvious stimulatory RNA secondary structure, but as confirmed here, can also direct the occurrence of −1 PRF, yielding a third, truncated nsp2 variant named “nsp2N.” Remarkably, we now show that both −2 and −1 PRF are transactivated by a protein factor, specifically a PRRSV replicase subunit (nsp1β). Embedded in nsp1β’s papain-like autoproteinase domain, we identified a highly conserved, putative RNA-binding motif that is critical for PRF transactivation. The minimal RNA sequence required for PRF was mapped within a 34-nt region that includes the slippery sequence and a downstream conserved CCCANCUCC motif. Interaction of nsp1β with the PRF signal was demonstrated in pull-down assays. These studies demonstrate for the first time, to our knowledge, that a protein can function as a transactivator of ribosomal frameshifting. The newly identified frameshifting determinants provide potential antiviral targets for arterivirus disease control and prevention. Moreover, protein-induced transactivation of frameshifting may be a widely used mechanism, potentially including previously undiscovered viral strategies to regulate viral gene expression and/or modulate host cell translation upon infection.
Journal of Virology | 2000
John Doorbar; Robert Elston; Sawsan Napthine; Kenneth Raj; Elizabeth Medcalf; Deborah J. Jackson; Nicholas Coleman; Heather Griffin; Philip Masterson; Simon N. Stacey; Yohannes Mengistu; Julia Dunlop
ABSTRACT Human papillomavirus type 16 (HPV16) infects cervical epithelium and is associated with the majority of cervical cancers. The E1∧E4 protein of HPV16 but not those of HPV1 or HPV6 was found to associate with a novel member of the DEAD box protein family of RNA helicases through sequences in its C terminus. This protein, termed E4-DBP (E4-DEAD box protein), has a molecular weight of 66,000 (66K) and can shuttle between the nucleus and the cytoplasm. It binds to RNA in vitro, including the major HPV16 late transcript (E1∧E4.L1), and has an RNA-independent ATPase activity which can be partially inhibited by E1∧E4. E4-DBP was detectable in the cytoplasm of cells expressing HPV16 E1∧E4 (in vivo and in vitro) and could be immunoprecipitated as an E1∧E4 complex from cervical epithelial cell lines. In cell lines lacking cytoplasmic intermediate filaments, loss of the leucine cluster-cytoplasmic anchor region of HPV16 E1∧E4 resulted in both proteins colocalizing exclusively to the nucleoli. Two additional HPV16 E1∧E4-binding proteins, of 80K and 50K, were identified in pull-down experiments but were not recognized by antibodies to E4-DBP or the conserved DEAD box motif. Sequence analysis of E4-DBP revealed homology in its E4-binding region with threeEscherichia coli DEAD box proteins involved in the regulation of mRNA stability and degradation (RhlB, SrmB, and DeaD) and with the Rrp3 protein of Saccharomyces cerevisiae, which is involved in ribosome biogenesis. The synthesis of HPV16 coat proteins occurs after E1∧E4 expression and genome amplification and is regulated at the level of mRNA stability and translation. Identification of E4-DBP as an HPV16 E1∧E4-associated protein indicates a possible role for E1∧E4 in virus synthesis.
Journal of General Virology | 1998
Robert Elston; Sawsan Napthine; John Doorbar
A 16-mer peptide library was screened using the yeast two-hybrid system to identify peptides which specifically interact with the human papillomavirus type 16 (HPV-16) E6 protein. Four different peptides were identified, three of which contained an E-L-L/V-G motif. A fifth E6 binding peptide, derived from the putative tumour suppressor protein tuberin, was identified during a two-hybrid screen of a HeLa cDNA expression library. This peptide contained a D-I-L-G motif. Homology to the peptides was found within the E6 binding proteins E6-AP and E6-BP. A synthetic peptide containing the ELLG motif blocked the interaction of E6 with both E6-AP and E6-BP. The data suggest that E6 interacts through a structurally similar binding domain present within a number of cellular proteins.
Journal of Molecular Biology | 1999
Jan Liphardt; Sawsan Napthine; Harry Kontos; Ian Brierley
Abstract RNA pseudoknots are structural elements that participate in a variety of biological processes. At −1 ribosomal frameshifting sites, several types of pseudoknot have been identified which differ in their organisation and functionality. The pseudoknot found in infectious bronchitis virus (IBV) is typical of those that possess a long stem 1 of 11-12 bp and a long loop 2 (30-164 nt). A second group of pseudoknots are distinguishable that contain stems of only 5 to 7 bp and shorter loops. The NMR structure of one such pseudoknot, that of mouse mammary tumor virus (MMTV), has revealed that it is kinked at the stem 1-stem 2 junction, and that this kinked conformation is essential for efficient frameshifting. We recently investigated the effect on frameshifting of modulating stem 1 length and stability in IBV-based pseudoknots, and found that a stem 1 with at least 11 bp was needed for efficient frameshifting. Here, we describe the sequence manipulations that are necessary to bypass the requirement for an 11 bp stem 1 and to convert a short non-functional IBV-derived pseudoknot into a highly efficient, kinked frameshifter pseudoknot. Simple insertion of an adenine residue at the stem 1-stem 2 junction (an essential feature of a kinked pseudoknot) was not sufficient to create a functional pseudoknot. An additional change was needed: efficient frameshifting was recovered only when the last nucleotide of loop 2 was changed from a G to an A. The requirement for an A at the end of loop 2 is consistent with a loop-helix contact similar to those described in other RNA tertiary structures. A mutational analysis of both partners of the proposed interaction, the loop 2 terminal adenine residue and two G·C pairs near the top of stem 1, revealed that the interaction was essential for efficient frameshifting. The specific requirement for a 3′-terminal A residue was lost when loop 2 was increased from 8 to 14 nt, suggesting that the loop-helix contact may be required only in those pseudoknots with a short loop 2.
PLOS Pathogens | 2013
Doron Regev; Makiko Watanabe; Danielle Hickman; Nissin Moussatche; Desyree Murta Jesus; Shannon M. Kahan; Sawsan Napthine; Ian Brierley; Robert N. Hunter; Divya Devabhaktuni; Melissa K. Jones; Stephanie M. Karst
Whether or not primary norovirus infections induce protective immunity has become a controversial issue, potentially confounded by the comparison of data from genetically distinct norovirus strains. Early human volunteer studies performed with a norovirus-positive inoculum initially led to the conclusion that primary infection does not generate long-term, protective immunity. More recently though, the epidemiological pattern of norovirus pandemics has led to the extrapolation that primary norovirus infection induces herd immunity. While these are seemingly discordant observations, they may in fact reflect virus strain-, cluster-, or genogroup-specific differences in protective immunity induction. Here, we report that highly genetically related intra-cluster murine norovirus strains differ dramatically in their ability to induce a protective immune response: Primary MNV-3 infection induced robust and cross-reactive protection, whereas primary MNV-1 infection induced modest homotypic and no heterotypic protection. In addition to this fundamental observation that intra-cluster norovirus strains display remarkable differences in protective immunity induction, we report three additional important observations relevant to norovirus:host interactions. First, antibody and CD4+ T cells are essential to controlling secondary norovirus infections. Second, the viral minor structural protein VP2 regulates the maturation of antigen presenting cells and protective immunity induction in a virus strain-specific manner, pointing to a mechanism by which MNV-1 may prevent the stimulation of memory immune responses. Third, VF1-mediated regulation of cytokine induction also correlates with protective immunity induction. Thus, two highly genetically-related norovirus strains displayed striking differences in induction of protective immune responses, strongly suggesting that the interpretation of norovirus immunity and vaccine studies must consider potential virus strain-specific effects. Moreover, we have identified immune (antibody and CD4+ T cells) and viral (VP2 and possibly VF1) correlates of norovirus protective immunity. These findings have significant implications for our understanding of norovirus immunity during primary infections as well as the development of new norovirus vaccines.
PLOS ONE | 2009
Sawsan Napthine; Robert A. Lever; Michael L. Powell; Richard J. Jackson; T. David K. Brown; Ian Brierley
Background Expression of the minor virion structural protein VP2 of the calicivirus murine norovirus (MNV) is believed to occur by the unusual mechanism of termination codon-dependent reinitiation of translation. In this process, following translation of an upstream open reading frame (ORF) and termination at the stop codon, a proportion of 40S subunits remain associated with the mRNA and reinitiate at the AUG of a downstream ORF, which is typically in close proximity. Consistent with this, the VP2 start codon (AUG) of MNV overlaps the stop codon of the upstream VP1 ORF (UAA) in the pentanucleotide UAA UG. Principal Findings Here, we confirm that MNV VP2 expression is regulated by termination-reinitiation and define the mRNA sequence requirements. Efficient reintiation is dependent upon 43 nt of RNA immediately upstream of the UAA UG site. Chemical and enzymatic probing revealed that the RNA in this region is not highly structured and includes an essential stretch of bases complementary to 18S rRNA helix 26 (Motif 1). The relative position of Motif 1 with respect to the UAA UG site impacts upon the efficiency of the process. Termination-reinitiation in MNV was also found to be relatively insensitive to the initiation inhibitor edeine. Conclusions The termination-reinitiation signal of MNV most closely resembles that of influenza BM2. Similar to other viruses that use this strategy, base-pairing between mRNA and rRNA is likely to play a role in tethering the 40S subunit to the mRNA following termination at the VP1 stop codon. Our data also indicate that accurate recognition of the VP2 ORF AUG is not a pre-requisite for efficient reinitiation of translation in this system.
The EMBO Journal | 2003
Sawsan Napthine; Marijana Vidakovic; Roseanne Girnary; Olivier Namy; Ian Brierley
Ribosomal frameshifting signals are found in mobile genetic elements, viruses and cellular genes of prokaryotes and eukaryotes. Typically they comprise a slippery sequence, X XXY YYZ, where the frameshift occurs, and a stimulatory mRNA element. Here we studied the influence of host translational environment and the identity of slippery sequence‐decoding tRNAs on the frameshift mechanism. By expressing candidate signals in Escherichia coli, and in wheatgerm extracts depleted of endogenous tRNAs and supplemented with prokaryotic or eukaryotic tRNA populations, we show that when decoding AAG in the ribosomal A‐site, E.coli tRNALys promotes a highly unusual single‐tRNA slippage event in both prokaryotic and eukaryotic ribosomes. This event does not appear to require slippage of the adjacent P‐site tRNA, although its identity is influential. Conversely, asparaginyl‐tRNA promoted a dual slippage event in either system. Thus, the tRNAs themselves are the main determinants in the selection of single‐ or dual‐tRNA slippage mechanisms. We also show for the first time that prokaryotic tRNAAsn is not inherently ‘unslippery’ and induces efficient frameshifting when in the context of a eukaryotic translation system.
RNA | 2001
Richard J. Jackson; Sawsan Napthine; Ian Brierley
A method is described for depleting rabbit reticulocyte lysates and wheat germ extracts of endogenous tRNAs by affinity chromatography using a matrix generated by coupling ethanolamine to epoxy-activated Sepharose 6B. Greater than 90% depletion of tRNA is achieved with the result that translation becomes in effect absolutely dependent on added tRNA. This depletion procedure should prove very useful for studying the influence of tRNA concentration, and the spectrum of the tRNA population, on recoding events such as programmed frameshifting and readthrough of termination codons.